A008956
Triangle of central factorial numbers |4^k t(2n+1,2n+1-2k)| read by rows (n>=0, k=0..n).
Original entry on oeis.org
1, 1, 1, 1, 10, 9, 1, 35, 259, 225, 1, 84, 1974, 12916, 11025, 1, 165, 8778, 172810, 1057221, 893025, 1, 286, 28743, 1234948, 21967231, 128816766, 108056025, 1, 455, 77077, 6092515, 230673443, 3841278805, 21878089479, 18261468225, 1, 680
Offset: 0
Triangle begins:
[1]
[1, 1]
[1, 10, 9]
[1, 35, 259, 225]
[1, 84, 1974, 12916, 11025]
[1, 165, 8778, 172810, 1057221, 893025]
[1, 286, 28743, 1234948, 21967231, 128816766, 108056025]
[1, 455, 77077, 6092515, 230673443, 3841278805, 21878089479, 18261468225]
...
- P. L. Butzer, M. Schmidt, E. L. Stark and L. Vogt, Central Factorial Numbers: Their main properties and some applications, Numerical Functional Analysis and Optimization, 10 (5&6), 419-488 (1989). [From Johannes W. Meijer, Jun 18 2009]
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- Reinhard Zumkeller, Rows n = 0..100 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812. [From _Johannes W. Meijer_, Jun 18 2009]
- R. H. Boels, T. Hansen, String theory in target space, arXiv preprint arXiv:1402.6356 [hep-th], 2014.
- T. L. Curtright, D. B. Fairlie, C. K. Zachos, A compact formula for rotations as spin matrix polynomials, arXiv preprint arXiv:1402.3541 [math-ph], 2014.
- T. L. Curtright, T. S. Van Kortryk, On Rotations as Spin Matrix Polynomials, arXiv:1408.0767 [math-ph], 2014.
- M. Eastwood and H. Goldschmidt, Zero-energy fields on complex projective space, arXiv preprint arXiv:1108.1602 [math.DG], 2011.
- M. Eastwood, The X-ray transform on projective space. - From _N. J. A. Sloane_, Oct 22 2012
-
a008956 n k = a008956_tabl !! n !! k
a008956_row n = a008956_tabl !! n
a008956_tabl = [1] : f [1] 1 1 where
f xs u t = ys : f ys v (t * v) where
ys = zipWith (+) (xs ++ [t^2]) ([0] ++ map (* u^2) (init xs) ++ [0])
v = u + 2
-- Reinhard Zumkeller, Dec 24 2013
-
f:=n->mul(x+(2*i+1)^2,i=0..n-1);
for n from 0 to 12 do
t1:=eval(f(n)); t1d:=degree(t1);
t12:=y^t1d*subs(x=1/y,t1); t2:=seriestolist(series(t12,y,20));
lprint(t2);
od: # N. J. A. Sloane, Feb 01 2011
A008956 := proc(n,k) local i ; mul( x+2*i-2*n-1,i=1..2*n) ; expand(%) ; coeftayl(%,x=0,2*(n-k)) ; abs(%) ; end: for n from 0 to 10 do for k from 0 to n do printf("%a,",A008956(n,k)) ; od: od: # R. J. Mathar, May 29 2009
nmax:=7: for n from 0 to nmax do t2(n, 0):=1: t2(n, n):=(doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do t2(n, k) := (2*n-1)^2*t2(n-1, k-1)+t2(n-1, k) od: od: seq(seq(t2(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jun 18 2009, Revised Sep 16 2012
-
t[, 0] = 1; t[n, n_] := t[n, n] = ((2*n-1)!!)^2; t[n_, k_] := t[n, k] = (2*n-1)^2*t[n-1, k-1] + t[n-1, k]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 07 2014, after Johannes W. Meijer *)
-
{T(n, k) = if( n<=0, k==0, (-1)^k * polcoeff( numerator( 2^(2*n -1) / sum(j=0, 2*n - 1, binomial( 2*n - 1, j) / (x + 2*n - 1 - 2*j))), 2*n - 2*k))}; /* Michael Somos, Feb 24 2003 */
A160487
The Lambda triangle.
Original entry on oeis.org
1, -107, 10, 59845, -7497, 210, -6059823, 854396, -35574, 420, 5508149745, -827924889, 41094790, -765534, 4620, -8781562891079, 1373931797082, -75405128227, 1738417252, -17219202, 60060
Offset: 2
The first few rows of the triangle LAMBDA(n,m) with n=2,3,.. and m=1,2,.. are
[1]
[ -107, 10]
[59845, -7497, 210]
[ -6059823, 854396, -35574, 420]
The first few LAMBDA(z;n) polynomials are
LAMBDA (z;n=2) = 1
LAMBDA (z;n=3) = -107 +10*z^2
LAMBDA (z;n=4) = 59845-7497*z^2+210*z^4
The first few CFN2(z;n) polynomials are
CFN2(z;n=2) = (z^2-1)
CFN2(z;n=3) = (z^4-10*z^2+9)
CFN2(z;n=4) = (z^6- 35*z^4+259*z^2-225)
The first few generating functions GL(z;n) are:
GL(z;n=2) = (6*(z^2-1)*GL(z,n=1) + (1)) /12
GL(z;n=3) = (60*(z^4-10*z^2+9)*GL(z,n=1)+ (-107+10*z^2)) / 1440
GL(z;n=4) = (1260*( z^6- 35*z^4+259*z^2-225)*GL(z,n=1) + (59845-7497*z^2+ 210*z^4))/907200
- Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
- Johannes W. Meijer, The zeros of the Eta, Zeta, Beta and Lambda polynomials, jpg and pdf, Mar 03 2013.
A160488 equals the first left hand column.
A160476 equals the first right hand column and 6*h(n).
A001620 is the Euler-Mascheroni constant gamma.
The CFN2(z, n) and the cfn2(n, k) lead to
A008956.
-
nmax:=7; for n from 0 to nmax do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: for n from 1 to nmax do Delta(n-1) := sum((1-2^(2*k1-1))* (-1)^(n+1)*(-bernoulli(2*k1)/(2*k1))*(-1)^(k1+n)*cfn2(n-1,n-k1, n), k1=1..n) / (2*4^(n-1)*(2*n-1)!); LAMBDA(-2, n) := sum(2*(1-2^(2*k1-1))*(-bernoulli(2*k1) / (2*k1))*(-1)^(k1+n)* cfn2(n-1,n-k1), k1=1..n)/ factorial(2*n-2) end do: Lcgz(2) := 1/12: f(2) := 1/12: for n from 3 to nmax do Lcgz(n) := LAMBDA(-2, n-1)/((2*n-2)*(2*n-3)): f(n) := Lcgz(n)-((2*n-3)/(2*n-2))*f(n-1) end do: for n from 1 to nmax do b(n) := denom(Lcgz(n+1)) end do: for n from 1 to nmax do b(n) := 2*n*denom(Delta(n-1))/2^(2*n) end do: p(2) := b(1): for n from 2 to nmax do p(n+1) := lcm(p(n)*(2*n)*(2*n-1), b(n)) end do: for n from 2 to nmax do LAMBDA(n, 1) := p(n)*f(n) end do: mmax:=nmax: for n from 2 to nmax do LAMBDA(n, n) := 0 end do: for n from 1 to nmax do b(n) := (2*n)*(2*n-1)*denom(Delta(n-1))/ (2^(2*n)*(2*n-1)) end do: c(1) := b(1): for n from 1 to nmax-1 do c(n+1) := lcm(c(n)*(2*n+2)* (2*n+1), b(n+1)) end do: for n from 1 to nmax do cm(n) := c(n)/(6*(2*n)!) end do: for n from 1 to nmax-1 do ZL(n+2) := cm(n+1)/cm(n) end do: for m from 2 to mmax do for n from m+1 to nmax do LAMBDA(n, m) := ZL(n)*(LAMBDA(n-1, m-1)-(2*n-3)^2*LAMBDA(n-1, m)) end do end do; seq(seq(LAMBDA(n,m), m=1..n-1), n=2..nmax);
# End first program.
nmax1:=10; m:=1; LS1row:=-2*m; for n from 0 to nmax1 do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax1 do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: mmax1:=nmax1: for m1 from 1 to mmax1 do LS1[-2*m1, 1] := 2*(1-2^(-(-2*m1+1)))*(-bernoulli(2*m1)/(2*m1)) od: for n from 2 to nmax1 do for m1 from 1 to mmax1-n+1 do LS1[ -2*m1, n] := sum((-1)^(k1+1)*cfn2(n-1,k1-1)* LS1[2*k1-2*n-2*m1, 1], k1=1..n)/(2*n-2)! od: od: seq(LS1[ -2*m, n], n=1..nmax1-m+1);
# End second program.
A162448
Numerators of the column sums of the LG1 matrix.
Original entry on oeis.org
-11, 863, -215641, 41208059, -9038561117, 28141689013943, -2360298440602051, 3420015713873670001, -147239749512798268300237, 176556159649301309969405807, -178564975300377173768513546347
Offset: 2
The first few generating functions GFL(z;n) are:
GFL(z;2) = (6*(z^2-1)*GFL(z;1)+(1))/18
GFL(z;3) = (60*(z^4-10*z^2+9)*GFL(z;1)+(-107+10*z^2))/2700
GFL(z;4) = (1260*(z^6-35*z^4+259*z^2-225)*GFL(z;1)+(59845-7497*z^2+210*z^4))/ 1984500
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
See
A162449 for the denominators of the column sums.
The LAMBDA(z, n) polynomials and the LS1 matrix lead to the Lambda triangle
A160487.
The CFN2(z, n), the cfn2(n, k) and the LG2 matrix lead to
A008956.
The pg(n) and hg(n) sequences lead to
A160476.
-
nmax := 12; mmax := nmax: for n from 0 to nmax do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1)+cfn2(n-1, k) od: od: for n from 1 to nmax do Delta(n-1) := sum((1-2^(2*k1-1))*(-1)^(n+1)*(-bernoulli(2*k1)/(2*k1))*(-1)^(k1+n)*cfn2(n-1, n-k1), k1=1..n)/ (2*4^(n-1)*(2*n-1)!) od: for n from 1 to nmax do LG1[ -2, n] := (-1)^(n+1)*4*Delta(n-1)* 4^(2*n-2)/binomial(2*n-2, n-1) od: for n from 1 to nmax do LGx[ -2, n] := LG1[ -2, n] od: for m from 0 to mmax do LGx[2*m, 1] := 2 od: for n from 2 to nmax do for m from 0 to mmax do LGx[2*m, n] := LGx[2*m-2, n-1]/((2*n-3)*(2*n-1)) - (2*n-3)*LGx[2*m, n-1]/(2*n-1) od: od: for n from 2 to nmax do s(n) := 0; for m from 0 to mmax-1 do s(n) := s(n) + LGx[2*m, n] od: od: seq(s(n), n=2..nmax);
# End program 1
nmax1:=5; ncol:=3; Digits:=20: mmax1:=nmax1: for n from 0 to nmax1 do cfn2(n, 0):=1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax1 do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: for m from 1 to mmax1 do LG1[ -2*m, 1] := (((2^(2*m-1)-1)*bernoulli(2*m)/m)) od: LG1[0, 1] := evalf(gamma): for m from 2 to mmax1 do LG1[2*m-2, 1] := evalf(2*(1-2^(-2*m+1))*Zeta(2*m-1)) od: for m from -mmax1+ncol-1 to mmax1-1 do LG1[2*m, ncol] := sum((-1)^(k1+1)*cfn2(ncol-1, k1-1)* LG1[2*m-(2*ncol-2*k1), 1], k1=1..ncol)/(doublefactorial(2*ncol-3)*doublefactorial(2*ncol-1)) od;
# End program 2
# Maple programs edited by Johannes W. Meijer, Sep 25 2012
A002198
Denominators of coefficients for numerical integration.
Original entry on oeis.org
24, 5760, 967680, 464486400, 122624409600, 2678117105664000, 64274810535936000, 149852129706639360000, 669659197233029971968000, 8839501403475995629977600000, 4879404774718749587747635200000
Offset: 0
- H. E. Salzer, Coefficients for mid-interval numerical integration with central differences, Phil. Mag., 36 (1945), 216-218.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- H. E. Salzer, Coefficients for mid-interval numerical integration with central differences, Phil. Mag., 36 (1945), 216-218. [Annotated scanned copy]
- T. R. Van Oppolzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten, Vol. 2, Engelmann, Leipzig, 1880, p. 545.
Factor of the LS1[ -2,n] matrix coefficients in
A160487.
-
nmax:=10: for n from 0 to nmax do A008956(n, 0) := 1: A008956(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do A008956(n, k) := (2*n-1)^2*A008956(n-1, k-1) + A008956(n-1, k) od: od:
for n from 0 to nmax do Delta(n) := add((1-2^(2*k1-1)) * (-1)^k1 * (bernoulli(2*k1)/(2*k1)) * A008956(n, n+1-k1), k1=1..n+1) / (2*4^(n)*(2*n+1)!) end do: a:=n-> denom (Delta(n)): seq(a(n), n=0..nmax); # Johannes W. Meijer, Jan 27 2009, Revised Sep 21 2012
A006685
Coefficients for numerical integration.
Original entry on oeis.org
24, 1920, 193536, 66355200, 13624934400, 243465191424000, 4944216195072000, 9990141980442624000, 39391717484295880704000, 465236915972420822630400000
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- H. E. Salzer, Coefficients for mid-interval numerical integration with central differences, Phil. Mag., 36 (1945), 216-218.
- T. R. Van Oppolzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten, Vol. 2, Engelmann, Leipzig, 1880, p. 545 (see denominators of numbers named P(2,2k)).
Showing 1-5 of 5 results.
Comments