cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002223 Smallest prime p of form p = 8k-1 such that first n primes (p_1=2, ..., p_n) are quadratic residues mod p.

Original entry on oeis.org

7, 23, 71, 311, 479, 1559, 5711, 10559, 18191, 31391, 366791, 366791, 366791, 4080359, 12537719, 30706079, 36415991, 82636319, 120293879, 120293879, 131486759, 131486759, 2929911599, 2929911599, 7979490791, 33857579279
Offset: 1

Views

Author

Keywords

Examples

			12^2 = 2 mod 71, 28^2 = 3 mod 71, 17^2 = 5 mod 71.
		

References

  • N. D. Bronson and D. A. Buell, Congruential sieves on FPGA computers, pp. 547-551 of Mathematics of Computation 1943-1993 (Vancouver, 1993), Proc. Symp. Appl. Math., Vol. 48, Amer. Math. Soc. 1994.
  • D. H. Lehmer, E. Lehmer and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp., 24 (1970), 433-451.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots. Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968, p. XV.

Crossrefs

Programs

  • Mathematica
    np[] := While[p = NextPrime[p]; Mod[p, 8] != 7]; p = 2; A002223 = {}; pp = {2}; np[]; While[ Length[A002223] < 26, If[Union[ JacobiSymbol[#, p] &[pp]] === {1}, AppendTo[pp, NextPrime[Last[pp]]]; Print[p]; AppendTo[A002223, p], np[]]]; A002223 (* Jean-François Alcover, Sep 09 2011 *)

Extensions

The Bronson-Buell reference gives terms through 227.
More terms from Don Reble, Sep 19 2001