A002246 a(1) = 3; for n > 1, a(n) = 4*phi(n); given a rational number r = p/q, where q>0, (p,q)=1, define its height to be max{|p|,q}; then a(n) = number of rational numbers of height n.
3, 4, 8, 8, 16, 8, 24, 16, 24, 16, 40, 16, 48, 24, 32, 32, 64, 24, 72, 32, 48, 40, 88, 32, 80, 48, 72, 48, 112, 32, 120, 64, 80, 64, 96, 48, 144, 72, 96, 64, 160, 48, 168, 80, 96, 88, 184, 64, 168, 80, 128, 96, 208, 72, 160, 96, 144, 112, 232, 64, 240, 120, 144, 128, 192, 80, 264
Offset: 1
Keywords
Examples
The three rational numbers of height 1 are 0, 1 and -1.
References
- M. N. Huxley, Area, Lattice Points and Exponential Sums, Oxford, 1996; p. 7.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
PARI
A002246(n) = if(1==n,3,4*eulerphi(n)); \\ Antti Karttunen, Dec 05 2017
Formula
a(1) = 3; thereafter a(n) = 4*phi(n) = 4*A000010(n).
Extensions
A simpler alternative description added to the name field by Antti Karttunen, Dec 05 2017
Comments