cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002303 Generalized tangent numbers.

Original entry on oeis.org

16, 272, 3968, 56320, 814080, 12207360, 191431680, 3149752320, 54428774400, 987559372800, 18797300121600, 374883257548800, 7822865085235200, 170560590520320000, 3879770715684864000, 91945674412720128000
Offset: 4

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Letterio Toscano, Sulla Derivata di Ordinen della Funzione tg(x), Tohoku Math. J., 42 (1936), 144-154.

Crossrefs

Cf. A059419.

Programs

  • PARI
    a(n, k)=if(k<0,0,if(n==1 && k==1,1,if(k>n,0,(k-1)*a(n-1,k-1)+(k+1)*a(n-1,k+1))))
    for(n=0,25,print1(a(n+6, n)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Nov 20 2006

Formula

Ignoring the initial term a(4) = 16 and working with an offset of 0 the e.g.f. appears to be the rational function 16*(17+78*t+45*t^2)/(1-t)^10 = 272 + 3968*t + 56320*t^2/2! + ... . - Peter Bala, Apr 23 2012
This rational function occurs in the series reversion (x-t*tan(x))^(-1) = x/(1-t) + 2*t/(1-t)^4*x^3/3! + 8*t*(2+3*t)/(1-t)^7*x^5/5! + 16*t*(17+78*t+45*t^2)/(1-t)^10*x^7/7! + ..., which is the e.g.f. for the triangle A059419 read by diagonals. - Peter Bala, Apr 23 2012

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Nov 20 2006