A002308 Consecutive quadratic nonresidues mod p.
0, 1, 2, 2, 3, 4, 3, 4, 4, 3, 4, 4, 5, 5, 4, 6, 5, 6, 6, 6, 4, 6, 7, 6, 6, 5, 7, 6, 10, 4, 7, 8, 5, 5, 6, 7, 5, 6, 6, 5, 6, 6, 6, 5, 5, 6, 7, 7, 7, 6, 7, 6, 5, 7, 6, 7, 9, 7, 7, 7, 9, 5, 7, 10, 7, 7, 8, 7, 8, 6, 8, 8, 9, 5, 8, 8, 5, 8, 9, 7, 8, 12, 6, 7, 10, 8, 9, 9, 7, 8, 11, 12, 8, 8, 10, 8, 7, 6, 10, 10, 9, 7, 10, 9, 7, 6, 9
Offset: 1
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- A. A. Bennett, Consecutive quadratic residues, Bull. Amer. Math. Soc., 32 (1926), 283-284.
Programs
-
Mathematica
f[l_, a_] := Module[{A = Split[l], B}, B = Last[Sort[ Cases[A, x : {a ..} :> {Length[x], Position[A, x][[1, 1]]}]]]; {First[B], Length[Flatten[Take[A, Last[B] - 1]]] + 1}]; g[n_] := f[-JacobiSymbol[Range[Prime[n] - 1], Prime[n]], 1][[1]]; g[1] = 0; Table[g[n], {n, 1, 107}] (* Jean-François Alcover, Oct 17 2012, after the Mathematica code of Robert G. Wilson v in A002307 *)
Extensions
More terms from David W. Wilson
Comments