cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002308 Consecutive quadratic nonresidues mod p.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 3, 4, 4, 3, 4, 4, 5, 5, 4, 6, 5, 6, 6, 6, 4, 6, 7, 6, 6, 5, 7, 6, 10, 4, 7, 8, 5, 5, 6, 7, 5, 6, 6, 5, 6, 6, 6, 5, 5, 6, 7, 7, 7, 6, 7, 6, 5, 7, 6, 7, 9, 7, 7, 7, 9, 5, 7, 10, 7, 7, 8, 7, 8, 6, 8, 8, 9, 5, 8, 8, 5, 8, 9, 7, 8, 12, 6, 7, 10, 8, 9, 9, 7, 8, 11, 12, 8, 8, 10, 8, 7, 6, 10, 10, 9, 7, 10, 9, 7, 6, 9
Offset: 1

Views

Author

Keywords

Comments

a(n) is the maximal number of positive reduced quadratic nonresidues which appear consecutively for the n-th prime.
When prime(n) == 3 (mod 4), then a(n) = A002307(n). - T. D. Noe, Apr 03 2007

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002307.

Programs

  • Mathematica
    f[l_, a_] := Module[{A = Split[l], B}, B = Last[Sort[ Cases[A, x : {a ..} :> {Length[x], Position[A, x][[1, 1]]}]]]; {First[B], Length[Flatten[Take[A, Last[B] - 1]]] + 1}]; g[n_] := f[-JacobiSymbol[Range[Prime[n] - 1], Prime[n]], 1][[1]]; g[1] = 0; Table[g[n], {n, 1, 107}] (* Jean-François Alcover, Oct 17 2012, after the Mathematica code of Robert G. Wilson v in A002307 *)

Extensions

More terms from David W. Wilson