cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002323 ((2^m - 1) / p) mod p, where p = prime(n) and m = ord(2,p).

Original entry on oeis.org

1, 3, 1, 5, 3, 15, 3, 20, 1, 1, 1, 32, 37, 22, 36, 8, 36, 10, 1, 7, 49, 48, 23, 77, 92, 81, 13, 95, 49, 1, 17, 95, 30, 96, 66, 132, 67, 107, 3, 50, 148, 25, 52, 175, 167, 109, 143, 201, 99, 30, 13, 207, 200, 255, 64, 260, 190, 208, 159, 208, 78, 98, 243, 60
Offset: 2

Views

Author

Keywords

Comments

a(n) = 0 if and only if prime(n) is a Wieferich prime (A001220). - Eric M. Schmidt, Feb 23 2015

Examples

			For p = prime(3) = 5, we find that m = 4 is the smallest positive integer for which 2^m - 1 is divisible by p. So a(3) = ((2^4 - 1) / 5) mod 5 = 3. - _Eric M. Schmidt_, Jun 21 2013
		

References

  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, pp. 7-10.
  • W. Meißner, Über die Teilbarkeit von 2^p-2 durch das Quadrat der Primzahl p=1093, Sitzungsberichte der Königlich Preußischen Akadamie der Wissenschaften, Berlin, 35 (1913), 663-667.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Table[p = Prime[n]; Mod[(2^MultiplicativeOrder[2, p] - 1)/p, p], {n, 2, 100}] (* T. D. Noe, Jun 21 2013 *)
  • PARI
    a(n) = my(p=prime(n));(lift(Mod(2,p^2)^znorder(Mod(2,p)))-1)/p \\ Jeppe Stig Nielsen, May 30 2023
  • Sage
    def A002323(n) : p = nth_prime(n); return (2^(Mod(2,p).multiplicative_order()) - 1) // p % p # Eric M. Schmidt, Jun 21 2013
    

Extensions

Proper definition added by and more terms from Eric M. Schmidt, Jun 21 2013