A002325 Glaisher's J numbers.
1, 1, 2, 1, 0, 2, 0, 1, 3, 0, 2, 2, 0, 0, 0, 1, 2, 3, 2, 0, 0, 2, 0, 2, 1, 0, 4, 0, 0, 0, 0, 1, 4, 2, 0, 3, 0, 2, 0, 0, 2, 0, 2, 2, 0, 0, 0, 2, 1, 1, 4, 0, 0, 4, 0, 0, 4, 0, 2, 0, 0, 0, 0, 1, 0, 4, 2, 2, 0, 0, 0, 3, 2, 0, 2, 2, 0, 0, 0, 0, 5, 2, 2, 0, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 1, 6, 1, 0, 4, 0, 0, 0
Offset: 1
Examples
x + x^2 + 2*x^3 + x^4 + 2*x^6 + x^8 + 3*x^9 + 2*x^11 + 2*x^12 + x^16 + ...
References
- B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 114 Entry 8(iii).
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 3, p. 19.
- N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.24).
- J. W. L. Glaisher, Table of the excess of the number of (8k+1)- and (8k+3)-divisors of a number over the number of (8k+5)- and (8k+7)-divisors, Messenger Math., 31 (1901), 82-91.
- D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, pp. 7-10.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- J. W. L. Glaisher, Table of the excess of the number of (8k+1)- and (8k+3)-divisors of a number over the number of (8k+5)- and (8k+7)-divisors, Messenger Math., 31 (1901), 82-91. [Incomplete annotated scanned copy]
- Michael D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211.
- Christian Kassel and Christophe Reutenauer, Pairs of intertwined integer sequences, arXiv:2507.15780 [math.NT], 2025. See p. 5.
- N. J. A. Sloane, Transforms.
- Index entries for sequences related to Glaisher's numbers.
Crossrefs
Programs
-
Maple
S:= series( (JacobiTheta3(0,q)*JacobiTheta3(0,q^2)-1)/2, q, 1001): seq(coeff(S,q,j), j=1..1000); # Robert Israel, Dec 01 2015
-
Mathematica
a[n_] := Total[ KroneckerSymbol[-8, #] & /@ Divisors[n]]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Nov 25 2011, after Michael Somos *) QP = QPochhammer; s = ((QP[q^2]^3*QP[q^4]^3)/(QP[q]^2*QP[q^8]^2)-1)/(2q) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Dec 01 2015, adapted from PARI *)
-
PARI
a(n) = if( n<1, 0, issquare(n)-issquare(2*n) + 2*sum(i=1,sqrtint(n\2), issquare(n-2*i^2)))
-
PARI
{a(n) = if( n<1, 0, qfrep([ 1, 0; 0, 2],n)[n])} \\ Michael Somos, Jun 05 2005
-
PARI
{a(n) = if( n<1, 0, direuler(p=2, n, 1 / (1 - X) / (1 - kronecker( -2, p) * X))[n])} \\ Michael Somos, Jun 05 2005
-
PARI
{a(n) = if( n<1, 0, sumdiv(n, d, kronecker( -2, d)))} \\ Michael Somos, Aug 23 2005
-
PARI
{a(n) = local(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 1, if( p%8<4, e+1, !(e%2))))))} \\ Michael Somos, Oct 23 2006
-
PARI
{a(n) = local(A); if( n<1, 0, A = x * O(x^n); polcoeff( eta(x + A)^-2 * eta(x^2 + A)^3 * eta(x^4 + A)^3 * eta(x^8 + A)^-2, n) / 2)}
-
PARI
a(n) = my(f=factor(n>>valuation(n,2)), e); prod(i=1, #f~, e=f[i, 2]; if( f[i, 1]%8<4, e+1, 1 - e%2)) \\ Charles R Greathouse IV, Sep 09 2014
Formula
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m, p)+1)*p^(-s) + Kronecker(m, p)*p^(-2s))^(-1) for m = -2.
Moebius transform is period 8 sequence [ 1, 0, 1, 0, -1, 0, -1, 0, ...]. - Michael Somos, Aug 23 2005
G.f.: (theta_3(q) * theta_3(q^2) - 1) / 2 = Sum_{k>0} Kronecker( -2, n) * x^k / (1 - x^k) = Sum_{k>0} (x^k + x^(3*k)) / (1 + x^(4*k)).
Multiplicative with a(2^e) = 1, a(p^e) = e+1 if p == 1, 3 (mod 8), a(p^e) = (1+(-1)^e)/2 if p == 5, 7 (mod 8). - Michael Somos, Oct 23 2006
A033715(n) = 2 * a(n) unless n=0.
G.f.: A(x) = 2*(1+x^2)/(G(0)-2*x*(1+x^2)); G(k) = 1+x+x^(2*k)*(1+x^3+x^(2*k+1)+x^(2*k+4)+x^(4*k+3)+x^(4*k+4)) - x*(1+x^(2*k))*(1+x^(2*k+4))*(1+x^(4*k+4))^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 03 2012
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(2)) = 1.110720... (A093954). - Amiram Eldar, Oct 11 2022
Comments