A002401 Coefficients for step-by-step integration.
1, 1, 5, 27, 502, 2375, 95435, 1287965, 29960476, 262426878, 28184365650, 303473091075, 46437880787562, 593196287807409, 8172332906336599, 241563260379065625, 64808657541894257992, 1087738506483388123364, 367580830209839294339148, 6906008426663826491899602, 136666305828261517346022452
Offset: 0
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Jack W Grahl, Table of n, a(n) for n = 0..100
- Jack W Grahl, Explanation of how this sequence is calculated
- Jack W Grahl, Python code to calculate this and related sequences
- W. F. Pickard, Tables for the step-by-step integration of ordinary differential equations of the first order, J. ACM 11 (1964), 229-233.
- W. F. Pickard, Tables for the step-by-step integration of ordinary differential equations of the first order, J. ACM 11 (1964), 229-233. [Annotated scanned copy]
Crossrefs
Formula
a(n) = lcm{1,2,...,n+1} * Sum_{k=0..n}(1/n+1-k)*s(-(n-1),k,n) where s(l,m,n) are the generalized Stirling numbers of the first kind. - Sean A. Irvine, Nov 10 2013
Extensions
More terms from Sean A. Irvine, Nov 10 2013
More terms from Jack W Grahl, Feb 28 2021
Comments