A002405 Coefficients for step-by-step integration.
1, -1, -1, -3, -38, -135, -4315, -48125, -950684, -7217406, -682590930, -6554931075, -903921420138, -10496162430897, -132415122967127, -3606726811032345, -896549281211592008, -14008671728814262500, -4425739007479443851340
Offset: 0
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Jack W Grahl, Table of n, a(n) for n = 0..100
- Jack W Grahl, Explanation of how the sequence was calculated
- Jack W Grahl, Python code to calculate this and related sequences
- W. F. Pickard, Tables for the step-by-step integration of ordinary differential equations of the first order, J. ACM 11 (1964), 229-233.
- W. F. Pickard, Tables for the step-by-step integration of ordinary differential equations of the first order, J. ACM 11 (1964), 229-233. [Annotated scanned copy]
Crossrefs
Formula
a(n) = lcm{1,2,...,n+1} * Sum_{k=0..n}((-1)^(n-k)/n+1-k)*s(-(n-1),k,n) where s(l,m,n) are the generalized Stirling numbers of the first kind. - Sean A. Irvine, Nov 10 2013
Extensions
More terms from Sean A. Irvine, Nov 10 2013
More terms from Jack W Grahl, Feb 28 2021
Comments