cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002444 Denominator in Feinler's formula for unsigned Bernoulli number |B_{2n}|.

Original entry on oeis.org

1, 6, 30, 84, 90, 132, 5460, 360, 1530, 7980, 13860, 8280, 81900, 1512, 3480, 114576, 117810, 1260, 3838380, 32760, 568260, 1191960, 869400, 236880, 9746100, 525096, 629640, 351120, 198360, 42480, 1362881520, 4324320, 1093950, 33008220, 434700, 843480, 46233287100, 102702600, 1081080
Offset: 0

Views

Author

Keywords

Comments

A002443/A002444 = |B_{2n}| (see also A000367/A002445).

References

  • H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 208.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory);
    g:=proc(m) local i,n; n:=2*m;
    mul(ithprime(i)^floor(n/(ithprime(i)-1)),i=1..pi(n+1));
    %/n!;
    end;
    [seq(g(m),m=0..40)]; # N. J. A. Sloane, Jan 08 2016
  • Mathematica
    a[n_] := Product[Prime[i]^Floor[2n/(Prime[i]-1)], {i, 1, PrimePi[2n+1]}]/(2n)!;
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 08 2023 *)

Formula

Let p_i denote the i-th prime, and let V(n,i) = floor(n/(prime(i)-1)) = A266742(n,i).
Then a(n) = (Prod_i (p_i)^V(n,i))/n!.
(See Davis, Vol. 2, p. 206, first displayed equation, where a(n) appears as d_{2k}.)

Extensions

Name amended upon suggestion by T. D. Noe, by M. F. Hasler, Jan 05 2016
Edited with new definition, more terms, and scan of source by N. J. A. Sloane, Jan 08 2016