A002463 Coefficients of Legendre polynomials.
1, 3, 30, 175, 4410, 29106, 396396, 2760615, 156434850, 1122854590, 16291599324, 119224885962, 3515605611700, 26077294372500, 388924218927000, 2913690606794775, 350671234206006450, 2647224022927695750, 40095381399899017500, 304513870316075169750
Offset: 1
Keywords
References
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 362.
- G. Prévost, Tables de Fonctions Sphériques. Gauthier-Villars, Paris, 1933, pp. 156-157.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Programs
-
PARI
lista(nn) = {forstep (n=1, nn, 2, lcmc = 1; for (m=0, n\2, lcmc = lcm(lcmc, denominator(binomial(2*n-2*m, n-m) * binomial(2*m, m)/4^n));); m = n\2; print1(lcmc*binomial(2*n-2*m, n-m) * binomial(2*m, m)/4^n, ", "););} \\ Michel Marcus, May 29 2013
-
Python
from sympy import binomial as C, lcm def a_list(nn): l = [] for n in range(1, nn + 1, 2): lcmc = 1 for m in range(n//2 + 1): lcmc = lcm(lcmc, (C(2*n - 2*m, n - m)*C(2*m, m)/4**n).denominator) m = n//2 l.append(lcmc*C(2*n - 2*m, n - m)*C(2*m, m)//4**n) return l # Indranil Ghosh, Jul 02 2017, after PARI code by Michel Marcus
Extensions
More terms from Michel Marcus, May 29 2013
Comments