cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002485 Numerators of convergents to Pi.

Original entry on oeis.org

0, 1, 3, 22, 333, 355, 103993, 104348, 208341, 312689, 833719, 1146408, 4272943, 5419351, 80143857, 165707065, 245850922, 411557987, 1068966896, 2549491779, 6167950454, 14885392687, 21053343141, 1783366216531, 3587785776203, 5371151992734, 8958937768937
Offset: 0

Views

Author

Keywords

Comments

From Alexander R. Povolotsky, Apr 09 2012: (Start)
K. S. Lucas found, by brute-force search, using Maple programming, several different variants of integral identities which relate each of several first Pi convergents (A002485(n)/A002486(n)) to Pi.
I conjecture the following identity below, which represents a generalization of Stephen Lucas's experimentally obtained identities:
(-1)^n*(Pi-A002485(n)/A002486(n)) = (1/abs(i)*2^j)*Integral_{x=0..1} (x^l*(1-x)^m*(k+(k+i)*x^2)/(1+x^2)) dx where {i, j, k, l, m} are some integers (see the Mathematics Stack Exchange link below). (End)
From a(1)=1 on also: Numbers for which |tan x| decreases monotonically to zero, in the same spirit as A004112, A046947, ... - M. F. Hasler, Apr 01 2013
See also A332095 for n*|tan n| < 1. - M. F. Hasler, Sep 13 2020

Examples

			The convergents are 0, 1, 3, 22/7, 333/106, 355/113, 103993/33102, 104348/33215, 208341/66317, 312689/99532, 833719/265381, 1146408/364913, 4272943/1360120, 5419351/1725033, 80143857/25510582, 165707065/52746197, 245850922/78256779, 411557987/131002976, 1068966896/340262731, 2549491779/811528438,  ... = A002485/A002486
		

References

  • P. Beckmann, A History of Pi. Golem Press, Boulder, CO, 2nd ed., 1971, p. 171 (but beware errors).
  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 88.
  • P. Finsler, Über die Faktorenzerlegung natuerlicher Zahlen, Elemente der Mathematik, 2 (1947), 1-11, see p. 7.
  • K. H. Rosen et al., eds., Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2000; p. 293.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 274.

Crossrefs

Cf. A002486 (denominators), A046947, A072398/A072399.
Cf. A096456 (numerators of convergents to Pi/2).

Programs

  • Maple
    Digits := 60: E := Pi; convert(evalf(E),confrac,50,'cvgts'): cvgts;
  • Mathematica
    Join[{0, 1}, Numerator @ Convergents[Pi,29]] (* Jean-François Alcover, Apr 08 2011 *)
  • PARI
    contfracpnqn(cf=contfrac(Pi),#cf)[1,] \\ M. F. Hasler, Apr 01 2013, simplified Oct 13 2020
    
  • PARI
    e=9e9;for(n=1,1e9,abs(tan(n)) 0 monotonically. - M. F. Hasler, Apr 01 2013

Extensions

Extended and corrected by David Sloan, Sep 23 2002