A002539
Eulerian numbers of the second kind: <>.
1, 22, 328, 4400, 58140, 785304, 11026296, 162186912, 2507481216, 40788301824, 697929436800, 12550904017920, 236908271543040, 4687098165573120, 97049168010017280, 2099830209402931200, 47405948832458496000, 1115089078488795648000, 27290469545695931904000, 694002594415741341696000
Offset: 0
Examples
For instance, a(1) = 22 because among the 7!! = 105 permutations of {1,1,2,2,3,3,4,4} selected according to the definition of Eulerian numbers of the second kind, only 22 contain n = 1 descent, namely : 11223443, 11224433, 11233244, 11233442, 11244233, 11332244, 11334422, 11442233, 12213344, 12233144, 12233441, 12244133, 13312244, 13344122, 14412233, 22113344, 22331144, 22334411, 22441133, 33112244, 33441122, 44112233. - _Jean-François Alcover_, Mar 28 2011
References
- Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 2nd edition; Addison-Wesley, 1994, pp. 270-271.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=0..99
- L. Carlitz, Some numbers related to the Stirling numbers of the first and second kind, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz., Numbers 544-576 (1976): 49-55. [Annotated scanned copy. The triangle is A008517.]
- I. Gessel and R. P. Stanley, Stirling polynomials, J. Combin. Theory, A 24 (1978), 24-33.
- O. J. Munch, Om potensproduktsummer [Norwegian, English summary], Nordisk Matematisk Tidskrift, 7 (1959), 5-19. [Annotated scanned copy]
- O. J. Munch, Om potensproduktsummer [ Norwegian, English summary ], Nordisk Matematisk Tidskrift, 7 (1959), 5-19. There are errors in the last two rows of his table.
Programs
-
Mathematica
b[1]=1; b[2]=22; b[n_] := b[n] = ((n-1)*(n-1)!*n^3 - (n+2)*(n+3)*b[n-2]*n + (n*(2*n+5)-4)*b[n-1]) / (n-1); a[n_] := b[n+1]; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Mar 23 2011, updated Oct 12 2015 *)
-
PARI
{a=vector(30,n,1);a[2]=22;for(n=3,#a,a[n]=(n-1)!*n^3+((n*(2*n+5)-4)*a[n-1] - n*(n+2)*(n+3)*a[n-2])/(n-1));a} \\ Uses offet 1 for technical reasons. - M. F. Hasler, Sep 19 2015
Formula
a(n)= (n+5)*a(n-1) + (n+1)*A002538(n+1), n>=1, a(0)=1.
Recurrence: (n-1)*n^2*a(n) = (n-1)*(3*n^3 + 12*n^2 + 6*n + 1)*a(n-1) - (n+1)*(3*n^4 + 15*n^3 + 13*n^2 - 15*n - 4)*a(n-2) + n*(n+1)^3*(n+2)*(n+3)*a(n-3). - Vaclav Kotesovec, May 24 2014
a(n) ~ n! * n^5 * log(n) * (log(n)*(1/2+181/(24*n)) + gamma*(1+181/(12*n)) - 2 - 65/(3*n)), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, May 24 2014
Extensions
Formulas adapted for offset 0 by Vaclav Kotesovec, May 24 2014
More terms from M. F. Hasler, Sep 19 2015
Comments