A002546 Denominator of Sum_{i+j+k=n; i,j,k > 0} 1/(i*j*k).
1, 2, 4, 8, 15, 240, 15120, 672, 8400, 100800, 69300, 4950, 17199000, 22422400, 33633600, 201801600, 467812800, 102918816000, 410646075840, 3555377280, 215100325440, 5162407810560, 30920671782000, 190281057120, 1085315579548200, 562756226432400, 22969641895200
Offset: 1
References
- W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
- A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]
- A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924. [Annotated scanned copy]
Crossrefs
Cf. A002545.
Programs
-
Maple
seq(denom(-Stirling1(j, 3)/j!*3!*(-1)^j), j=3..50); # Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
-
Mathematica
Denominator[Table[Sum[1/i/j/(n-i-j), {i, n-2}, {j, n-i-1}], {n, 3, 100}]] (* Ryan Propper *)
Formula
Extensions
More terms from Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
Comments