A002545 Numerator of Sum_{i+j+k=n; i,j,k > 0} 1/(i*j*k).
1, 3, 7, 15, 29, 469, 29531, 1303, 16103, 190553, 128977, 9061, 30946717, 39646461, 58433327, 344499373, 784809203, 169704792667, 665690574539, 5667696059, 337284946763, 7964656853269, 46951444927823, 284451446729, 1597747168263479, 816088653136373
Offset: 3
References
- W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
- A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]
- A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924. [Annotated scanned copy]
- Jianqiang Zhao, Bernoulli numbers, Wolstenholme's theorem, and p^5 variations of Lucas' theorem, Journal of Number Theory, Volume 123, Issue 1, March 2007, Pages 18-26. See Corollary 4.2 p. 25.
Crossrefs
Cf. A002546.
Programs
-
Maple
seq(numer(-Stirling1(j, 3)/j!*3!*(-1)^j), j=3..50); # Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
-
Mathematica
Table[Sum[1/i/j/(n-i-j), {i, n-2}, {j, n-i-1}], {n, 3, 100}] (* Ryan Propper *)
Formula
Extensions
More terms from Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
Comments