cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A002545 Numerator of Sum_{i+j+k=n; i,j,k > 0} 1/(i*j*k).

Original entry on oeis.org

1, 3, 7, 15, 29, 469, 29531, 1303, 16103, 190553, 128977, 9061, 30946717, 39646461, 58433327, 344499373, 784809203, 169704792667, 665690574539, 5667696059, 337284946763, 7964656853269, 46951444927823, 284451446729, 1597747168263479, 816088653136373
Offset: 3

Views

Author

Keywords

Comments

Numerators of coefficients for numerical differentiation.
a(n)/A002546(n) = 3*int(x^(n-1)*log^2(x/(1-x)),x=0..1)-(Pi^2)/n. - Groux Roland, Nov 13 2009
For prime p >= 5, a(p) == -2*Bernoulli(p-3) (mod p). (See Zhao link.) - Michel Marcus, Feb 05 2016

References

  • W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
  • A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002546.

Programs

  • Maple
    seq(numer(-Stirling1(j, 3)/j!*3!*(-1)^j), j=3..50); # Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
  • Mathematica
    Table[Sum[1/i/j/(n-i-j), {i, n-2}, {j, n-i-1}], {n, 3, 100}] (* Ryan Propper *)

Formula

G.f.: (-log(1-x))^3 (for fractions A002545(n)/A002546(n)). - Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
A002545(n)/A002546(n) = 6*Stirling_1(n+3, 3)*(-1)^n/(n+3)!. - Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002

Extensions

More terms from Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
Showing 1-1 of 1 results.