A002548
Denominators of coefficients for numerical differentiation.
Original entry on oeis.org
1, 1, 12, 6, 180, 10, 560, 1260, 12600, 1260, 166320, 13860, 2522520, 2702700, 2882880, 360360, 110270160, 2042040, 775975200, 162954792, 56904848, 2586584, 1427794368, 892371480, 116008292400, 120470149800, 1124388064800
Offset: 2
0, 0, 1/12, 1/6, 43/180, 3/10, 197/560, 499/1260, 5471/12600, ...
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 2..250
- W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
- W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]
- A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924.
- A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924. [Annotated scanned copy]
- Eric Weisstein's World of Mathematics, Triangle Point Picking
- Eric Weisstein's World of Mathematics, Simplex Simplex Picking
- Index entries for sequences related to the Josephus Problem
-
seq(denom(Stirling1(j+2,2)/(j+2)!*2!*(-1)^j), j=0..50);
-
Table[Denominator[1 - 2*HarmonicNumber[n - 1]/n], {n, 2, 30}] (* Wesley Ivan Hurt, Mar 24 2014 *)
More terms, GF, formula, Maple code from Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
A002547
Numerator of the n-th harmonic number H(n) divided by (n+1); a(n) = A001008(n) / ((n+1)*A002805(n)).
Original entry on oeis.org
1, 1, 11, 5, 137, 7, 363, 761, 7129, 671, 83711, 6617, 1145993, 1171733, 1195757, 143327, 42142223, 751279, 275295799, 55835135, 18858053, 830139, 444316699, 269564591, 34052522467, 34395742267, 312536252003, 10876020307, 9227046511387, 300151059037
Offset: 1
H(n) = Sum_{k=1..n} 1/k, begins 1, 3/2, 11/6, 25/12, ... so H(n)/(n+1) begins 1/2, 1/2, 11/24, 5/12, ....
a(4) = numerator(H(4)/(4+1)) = 5.
- W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
- A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. F. Hasler, Table of n, a(n) for n = 1..2000 (first 700 terms from Alois P. Heinz)
- W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]
- A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924. [Annotated scanned copy]
- Eric Weisstein's World of Mathematics, Harmonic Number
-
List([1..35], n-> NumeratorRat(Sum([1..n], k-> 1/k)/(n+1))); # G. C. Greubel, Jul 03 2019
-
[Numerator(HarmonicNumber(n)/(n+1)): n in [1..35]]; // G. C. Greubel, Jul 03 2019
-
H := proc(a, b) option remember; local m, p, q, r, s;
if b - a <= 1 then return 1, a fi; m := iquo(a + b, 2);
p, q := H(a, m); r, s := H(m, b); p*s + q*r, q*s; end:
A002547 := proc(n) H(1, n+1); numer(%[1]/(%[2]*(n+1))) end:
seq(A002547(n), n=1..30); # Peter Luschny, Jul 11 2019
-
a[n_]:= Numerator[HarmonicNumber[n]/(n+1)]; Table[a[n], {n, 35}] (* modified by G. C. Greubel, Jul 03 2019 *)
-
h(n) = sum(k=1, n, 1/k);
vector(35, n, numerator(h(n)/(n+1))) \\ G. C. Greubel, Jul 03 2019
-
A002547(n)=numerator(A001008(n)/(n+1)) \\ M. F. Hasler, Jul 03 2019
-
[numerator(harmonic_number(n)/(n+1)) for n in (1..35)] # G. C. Greubel, Jul 03 2019
More terms from Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
A002546
Denominator of Sum_{i+j+k=n; i,j,k > 0} 1/(i*j*k).
Original entry on oeis.org
1, 2, 4, 8, 15, 240, 15120, 672, 8400, 100800, 69300, 4950, 17199000, 22422400, 33633600, 201801600, 467812800, 102918816000, 410646075840, 3555377280, 215100325440, 5162407810560, 30920671782000, 190281057120, 1085315579548200, 562756226432400, 22969641895200
Offset: 1
- W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
- A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
seq(denom(-Stirling1(j, 3)/j!*3!*(-1)^j), j=3..50); # Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
-
Denominator[Table[Sum[1/i/j/(n-i-j), {i, n-2}, {j, n-i-1}], {n, 3, 100}]] (* Ryan Propper *)
More terms from Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
Showing 1-3 of 3 results.
Comments