cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A002548 Denominators of coefficients for numerical differentiation.

Original entry on oeis.org

1, 1, 12, 6, 180, 10, 560, 1260, 12600, 1260, 166320, 13860, 2522520, 2702700, 2882880, 360360, 110270160, 2042040, 775975200, 162954792, 56904848, 2586584, 1427794368, 892371480, 116008292400, 120470149800, 1124388064800
Offset: 2

Views

Author

Keywords

Comments

Denominator of 1 - 2*HarmonicNumber(n-1)/n. - Eric W. Weisstein, Apr 15 2004
Denominator of u(n) = sum( k=1, n-1, 1/(k(n-k)) ) (u(n) is asymptotic to 2*log(n)/n). - Benoit Cloitre, Apr 12 2003; corrected by Istvan Mezo, Oct 29 2012
Expected area of the convex hull of n points picked at random inside a triangle with unit area. - Eric W. Weisstein, Apr 15 2004

Examples

			0, 0, 1/12, 1/6, 43/180, 3/10, 197/560, 499/1260, 5471/12600, ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    seq(denom(Stirling1(j+2,2)/(j+2)!*2!*(-1)^j), j=0..50);
  • Mathematica
    Table[Denominator[1 - 2*HarmonicNumber[n - 1]/n], {n, 2, 30}] (* Wesley Ivan Hurt, Mar 24 2014 *)

Formula

G.f.: (-log(1-x))^2 (for fractions A002547(n)/A002548(n)).
A002547(n)/a(n) = 2*Stirling_1(n+2, 2)(-1)^n/(n+2)!.

Extensions

More terms, GF, formula, Maple code from Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 16 2007

A304589 a(n) = (n!)^3 * Sum_{k=1..n-1} 1/(k*(n-k))^3.

Original entry on oeis.org

0, 0, 8, 54, 1240, 70000, 7941968, 1589632128, 512918521344, 249820864339968, 174720109813751808, 168721560082538496000, 217977447876560510976000, 367117517435096337481728000, 788739873984137255456342016000, 2122296978948474538763602624512000
Offset: 0

Views

Author

Vaclav Kotesovec, May 15 2018

Keywords

Comments

In general, for m > 1, Sum_{k=1..n-1} 1/(k*(n-k))^m is asymptotic to 2*Zeta(m)/n^m.

Crossrefs

Programs

  • GAP
    List([0..20],n->Factorial(n)^3*Sum([1..n-1],k->1/(k*(n-k))^3)); # Muniru A Asiru, May 16 2018
  • Maple
    seq(factorial(n)^3*add(1/(k*(n-k))^3,k=1..n-1),n=0..20); # Muniru A Asiru, May 16 2018
  • Mathematica
    Table[n!^3*Sum[1/(k*(n-k))^3, {k, 1, n-1}], {n, 0, 20}]
    CoefficientList[Series[PolyLog[3, x]^2, {x, 0, 20}], x] * Range[0,20]!^3

Formula

Recurrence: n^2*(12*n^4 - 108*n^3 + 354*n^2 - 501*n + 260)*a(n) = 2*(n-1)^2*(24*n^7 - 306*n^6 + 1620*n^5 - 4599*n^4 + 7516*n^3 - 7015*n^2 + 3444*n - 696)*a(n-1) - 6*(n-2)^5*(12*n^7 - 162*n^6 + 906*n^5 - 2700*n^4 + 4583*n^3 - 4378*n^2 + 2163*n - 436)*a(n-2) + 2*(n-3)^5*(n-2)^3*(24*n^7 - 342*n^6 + 2004*n^5 - 6201*n^4 + 10816*n^3 - 10497*n^2 + 5208*n - 1048)*a(n-3) - (n-4)^6*(n-3)^5*(n-2)^3*(12*n^4 - 60*n^3 + 102*n^2 - 69*n + 17)*a(n-4).
a(n) / (n!)^3 ~ 2*Zeta(3)/n^3.

A304581 Numerator of Sum_{k=1..n-1} 1/(k*(n-k))^2.

Original entry on oeis.org

0, 0, 1, 1, 41, 13, 8009, 161, 190513, 167101, 13371157, 21857, 316786853, 371449, 52598187029, 260957190289, 129548894873, 3562512061, 295728132584141, 814542451061, 105590441859671453, 21013691164284241, 2988054680665783, 5623939943287, 1567371864703176307
Offset: 0

Views

Author

Vaclav Kotesovec, May 15 2018

Keywords

Comments

Sum_{k=1..n-1} 1/(k*(n-k))^2 is asymptotic to Pi^2/(3*n^2) + 4*log(n)/n^3.

Examples

			0, 0, 1, 1/2, 41/144, 13/72, 8009/64800, 161/1800, 190513/2822400, ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[PolyLog[2, x]^2, {x, 0, 25}], x]//Numerator
    Table[Sum[1/(k*(n - k))^2, {k, 1, n - 1}], {n, 0, 25}]//Numerator

A120299 Largest prime factor of Stirling numbers of first kind s(n,2) = A000254(n).

Original entry on oeis.org

3, 11, 5, 137, 7, 11, 761, 7129, 61, 863, 509, 919, 1117, 41233, 8431, 1138979, 39541, 7440427, 11167027, 18858053, 227, 583859, 467183, 312408463, 34395742267, 215087, 375035183, 4990290163, 17783, 2667653736673, 535919, 199539368321, 15088528003, 137121586897, 9059
Offset: 2

Views

Author

Alexander Adamchuk, Jul 11 2006

Keywords

Crossrefs

Programs

Formula

a(n) = Max[FactorInteger[Sum[1/i,{i,1,n}]/Product[1/i,{i,1,n}]]].
a(n) = gpf(A096617(n)), where gpf = A006530 is the greatest prime factor, and A096617 is a "reduced" variant of A001008 and thus A000254. [Conjectured; true if this gpf is always > n.] - M. F. Hasler, Jul 04 2019

Extensions

More terms from M. F. Hasler, Jul 04 2019

A232180 First bisection of harmonic numbers (numerators).

Original entry on oeis.org

1, 11, 137, 363, 7129, 83711, 1145993, 1195757, 42142223, 275295799, 18858053, 444316699, 34052522467, 312536252003, 9227046511387, 290774257297357, 53676090078349, 54437269998109, 2040798836801833, 2066035355155033, 85691034670497533
Offset: 1

Views

Author

Keywords

Comments

Numerator of H(2*n-1), where H(n) = Sum_{k=1..n} 1/k.
It can be noted that the second row of the Akiyama-Tanigawa transform of the fractions A232180/A232181 has a simple expression: -5/6, -9/10, -13/14, -17/18, -21/22, ... are of the form -(4*k+5)/(4*k+6).

Crossrefs

Cf. A001008, A002547, A093158, A175441, A232181 (denominators).

Programs

  • Magma
    [Numerator(HarmonicNumber(2*n-1)): n in [1..30]]; // Bruno Berselli, Nov 20 2013
  • Mathematica
    a[n_] := HarmonicNumber[2*n-1] // Numerator; Table[a[n], {n, 1, 25}]

Formula

a(n) ~ exp(2n).
Showing 1-5 of 5 results.