A002548 Denominators of coefficients for numerical differentiation.
1, 1, 12, 6, 180, 10, 560, 1260, 12600, 1260, 166320, 13860, 2522520, 2702700, 2882880, 360360, 110270160, 2042040, 775975200, 162954792, 56904848, 2586584, 1427794368, 892371480, 116008292400, 120470149800, 1124388064800
Offset: 2
Examples
0, 0, 1/12, 1/6, 43/180, 3/10, 197/560, 499/1260, 5471/12600, ...
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 2..250
- W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
- W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]
- A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924.
- A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924. [Annotated scanned copy]
- Eric Weisstein's World of Mathematics, Triangle Point Picking
- Eric Weisstein's World of Mathematics, Simplex Simplex Picking
- Index entries for sequences related to the Josephus Problem
Programs
-
Maple
seq(denom(Stirling1(j+2,2)/(j+2)!*2!*(-1)^j), j=0..50);
-
Mathematica
Table[Denominator[1 - 2*HarmonicNumber[n - 1]/n], {n, 2, 30}] (* Wesley Ivan Hurt, Mar 24 2014 *)
Formula
Extensions
More terms, GF, formula, Maple code from Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 16 2007
Comments