cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A093763 Duplicate of A002548.

Original entry on oeis.org

1, 1, 12, 6, 180, 10, 560, 1260, 12600, 1260, 166320, 13860, 2522520, 2702700
Offset: 1

Views

Author

Keywords

A002547 Numerator of the n-th harmonic number H(n) divided by (n+1); a(n) = A001008(n) / ((n+1)*A002805(n)).

Original entry on oeis.org

1, 1, 11, 5, 137, 7, 363, 761, 7129, 671, 83711, 6617, 1145993, 1171733, 1195757, 143327, 42142223, 751279, 275295799, 55835135, 18858053, 830139, 444316699, 269564591, 34052522467, 34395742267, 312536252003, 10876020307, 9227046511387, 300151059037
Offset: 1

Views

Author

Keywords

Comments

Numerators of coefficients for numerical differentiation.

Examples

			H(n) = Sum_{k=1..n} 1/k, begins 1, 3/2, 11/6, 25/12, ... so H(n)/(n+1) begins 1/2, 1/2, 11/24, 5/12, ....
a(4) = numerator(H(4)/(4+1)) = 5.
		

References

  • W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
  • A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    List([1..35], n-> NumeratorRat(Sum([1..n], k-> 1/k)/(n+1))); # G. C. Greubel, Jul 03 2019
  • Magma
    [Numerator(HarmonicNumber(n)/(n+1)): n in [1..35]]; // G. C. Greubel, Jul 03 2019
    
  • Maple
    H := proc(a, b) option remember; local m, p, q, r, s;
    if b - a <= 1 then return 1, a fi; m := iquo(a + b, 2);
    p, q := H(a, m); r, s := H(m, b); p*s + q*r, q*s; end:
    A002547 := proc(n) H(1, n+1); numer(%[1]/(%[2]*(n+1))) end:
    seq(A002547(n), n=1..30); # Peter Luschny, Jul 11 2019
  • Mathematica
    a[n_]:= Numerator[HarmonicNumber[n]/(n+1)]; Table[a[n], {n, 35}] (* modified by G. C. Greubel, Jul 03 2019 *)
  • PARI
    h(n) = sum(k=1, n, 1/k);
    vector(35, n, numerator(h(n)/(n+1))) \\ G. C. Greubel, Jul 03 2019
    
  • PARI
    A002547(n)=numerator(A001008(n)/(n+1)) \\ M. F. Hasler, Jul 03 2019
    
  • Sage
    [numerator(harmonic_number(n)/(n+1)) for n in (1..35)] # G. C. Greubel, Jul 03 2019
    

Formula

G.f.: (-log(1-x))^2 (for fractions A002547(n)/A002548(n)). - Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
A002547(n)/A002548(n) = 2*Stirling_1(n+2, 2)(-1)^n/(n+2)! - Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
Numerator of u(n) = Sum_{k=1..n-1} 1/(k*(n-k)) (u(n) is asymptotic to 2*log(n)/n). - Benoit Cloitre, Apr 12 2003; corrected by Istvan Mezo, Oct 29 2012
a(n) = numerator of 2*Integral_{0..1} x^(n+1)*log(x/(1-x)) dx. - Groux Roland, May 18 2011
a(n) = numerator of A001008(n)/(n+1), since A001008(n)/A002805(n) are already in lowest terms. - M. F. Hasler, Jul 03 2019

Extensions

More terms from Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
Simpler definition from Alexander Adamchuk, Oct 31 2004
Offset corrected by Gary Detlefs, Sep 08 2011
Definition corrected by M. F. Hasler, Jul 03 2019

A061172 Third column of Lucas bisection triangle (odd part).

Original entry on oeis.org

9, 120, 753, 3612, 15040, 57366, 206115, 709152, 2360943, 7659870, 24340184, 76031100, 234116493, 712166952, 2143779645, 6394719216, 18923041360, 55601888562, 162350117703, 471371537040, 1361642740059
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

Numerator of g.f. is row polynomial Sum_{m=0..4} A061187(2,m)*x^m.

Crossrefs

Programs

  • Magma
    I:=[9, 120, 753, 3612, 15040, 57366]; [n le 6 select I[n] else 9*Self(n-1)-30*Self(n-2)+45*Self(n-3)-30*Self(n-4)+9*Self(n-5) - Self(n-6): n in [1..30]]; // G. C. Greubel, Dec 21 2017
  • Mathematica
    CoefficientList[Series[(3-2*x)*(4*x^3-9*x^2+15*x+3)/(1-3*x+x^2)^3, {x,0,50}], x] (* or *) LinearRecurrence[{9,-30,45,-30,9,-1}, {9, 120, 753, 3612, 15040, 57366}, 30] (* G. C. Greubel, Dec 21 2017 *)
  • PARI
    x='x+O('x^30); Vec((3-2*x)*(4*x^3-9*x^2+15*x+3)/(1-3*x+x^2)^3) \\ G. C. Greubel, Dec 21 2017
    

Formula

a(n) = A060924(n+2, 2).
G.f.: (3-2*x)*(4*x^3-9*x^2+15*x+3)/(1-3*x+x^2)^3.

A304589 a(n) = (n!)^3 * Sum_{k=1..n-1} 1/(k*(n-k))^3.

Original entry on oeis.org

0, 0, 8, 54, 1240, 70000, 7941968, 1589632128, 512918521344, 249820864339968, 174720109813751808, 168721560082538496000, 217977447876560510976000, 367117517435096337481728000, 788739873984137255456342016000, 2122296978948474538763602624512000
Offset: 0

Views

Author

Vaclav Kotesovec, May 15 2018

Keywords

Comments

In general, for m > 1, Sum_{k=1..n-1} 1/(k*(n-k))^m is asymptotic to 2*Zeta(m)/n^m.

Crossrefs

Programs

  • GAP
    List([0..20],n->Factorial(n)^3*Sum([1..n-1],k->1/(k*(n-k))^3)); # Muniru A Asiru, May 16 2018
  • Maple
    seq(factorial(n)^3*add(1/(k*(n-k))^3,k=1..n-1),n=0..20); # Muniru A Asiru, May 16 2018
  • Mathematica
    Table[n!^3*Sum[1/(k*(n-k))^3, {k, 1, n-1}], {n, 0, 20}]
    CoefficientList[Series[PolyLog[3, x]^2, {x, 0, 20}], x] * Range[0,20]!^3

Formula

Recurrence: n^2*(12*n^4 - 108*n^3 + 354*n^2 - 501*n + 260)*a(n) = 2*(n-1)^2*(24*n^7 - 306*n^6 + 1620*n^5 - 4599*n^4 + 7516*n^3 - 7015*n^2 + 3444*n - 696)*a(n-1) - 6*(n-2)^5*(12*n^7 - 162*n^6 + 906*n^5 - 2700*n^4 + 4583*n^3 - 4378*n^2 + 2163*n - 436)*a(n-2) + 2*(n-3)^5*(n-2)^3*(24*n^7 - 342*n^6 + 2004*n^5 - 6201*n^4 + 10816*n^3 - 10497*n^2 + 5208*n - 1048)*a(n-3) - (n-4)^6*(n-3)^5*(n-2)^3*(12*n^4 - 60*n^3 + 102*n^2 - 69*n + 17)*a(n-4).
a(n) / (n!)^3 ~ 2*Zeta(3)/n^3.

A304582 Denominator of Sum_{k=1..n-1} 1/(k*(n-k))^2.

Original entry on oeis.org

1, 1, 1, 2, 144, 72, 64800, 1800, 2822400, 3175200, 317520000, 635040, 11064936960, 15367968, 2545242860160, 14609174580000, 8310997094400, 259718659200, 24319016372851200, 75058692508800, 10838475198270720000, 2389883781218693760, 374701571140216320
Offset: 0

Views

Author

Vaclav Kotesovec, May 15 2018

Keywords

Examples

			0, 0, 1, 1/2, 41/144, 13/72, 8009/64800, 161/1800, 190513/2822400, ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[PolyLog[2, x]^2, {x, 0, 25}], x]//Denominator
    Table[Sum[1/(k*(n - k))^2, {k, 1, n - 1}], {n, 0, 25}]//Denominator

A061174 Fifth column of Lucas bisection triangle (odd part).

Original entry on oeis.org

15, 545, 7043, 57560, 365045, 1970905, 9520315, 42385132, 177293730, 705980760, 2701362950, 10001654350, 36020160943, 126701700755, 436709397085, 1478813477920, 4930328078835, 16212542696607
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

Numerator of g.f. is row polynomial sum(A061187(4,m)*x^m,m=0..7).

Crossrefs

Formula

a(n)=A060924(n+4, 4).
G.f.: (3-2*x)*(16*x^6-56*x^5+181*x^4-306*x^3+171*x^2+110*x+5)/(1-3*x+x^2)^5.

A093762 Numerators of 1-2*HarmonicNumber(n)/(n+1).

Original entry on oeis.org

0, 0, 1, 1, 43, 3, 197, 499, 5471, 589, 82609, 7243, 1376527, 1530967, 1687123, 217033, 68127937, 1290761, 500679401, 107119657, 38046795, 1756445, 983477669, 622806889, 81955769933, 86074407533, 811851812797, 29280696293
Offset: 1

Views

Author

Eric W. Weisstein, Apr 15 2004

Keywords

Comments

Expected area of the convex hull of n points picked at random inside a triangle with unit area.

Examples

			0, 0, 1/12, 1/6, 43/180, 3/10, 197/560, 499/1260, 5471/12600, ...
		

Crossrefs

Cf. A002548.

Programs

  • Maple
    h:= 1:
    A[1]:= 0:
    for n from 2 to 50 do
      h:= h+1/n;
      A[n]:= numer(1-2*h/(n+1));
    od:
    seq(A[i],i=1..50); # Robert Israel, Oct 17 2018
  • Mathematica
    Table[Numerator[1-2HarmonicNumber[n]/(n+1)],{n,30}] (* Harvey P. Dale, Oct 10 2013 *)
  • PARI
    a(n) = numerator(1-2*sum(i=1, n, 1/i)/(n+1)) \\ Felix Fröhlich, Oct 17 2018

A061175 One half of sixth column of Lucas bisection triangle (odd part).

Original entry on oeis.org

9, 471, 8268, 85962, 662773, 4215123, 23440212, 118073914, 551281476, 2423731704, 10148667670, 40812739230, 158644493079, 599051383561, 2206150654944, 7949311477362, 28098758599203, 97645872621753
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

Numerator of G.f. is one half of row polynomial sum(A061187(5,m)*x^m,m=0..8).

Crossrefs

Formula

a(n)= A060924(n+5, 5)/2.
G.f.: (1+x)*(3-2*x)*(12*x^3-35*x^2+29*x+1)*(4*x^3-9*x^2+15*x+3)/(1-3*x+x^2)^6.
Showing 1-8 of 8 results.