Original entry on oeis.org
1, 1, 12, 6, 180, 10, 560, 1260, 12600, 1260, 166320, 13860, 2522520, 2702700
Offset: 1
A002547
Numerator of the n-th harmonic number H(n) divided by (n+1); a(n) = A001008(n) / ((n+1)*A002805(n)).
Original entry on oeis.org
1, 1, 11, 5, 137, 7, 363, 761, 7129, 671, 83711, 6617, 1145993, 1171733, 1195757, 143327, 42142223, 751279, 275295799, 55835135, 18858053, 830139, 444316699, 269564591, 34052522467, 34395742267, 312536252003, 10876020307, 9227046511387, 300151059037
Offset: 1
H(n) = Sum_{k=1..n} 1/k, begins 1, 3/2, 11/6, 25/12, ... so H(n)/(n+1) begins 1/2, 1/2, 11/24, 5/12, ....
a(4) = numerator(H(4)/(4+1)) = 5.
- W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
- A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. F. Hasler, Table of n, a(n) for n = 1..2000 (first 700 terms from Alois P. Heinz)
- W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]
- A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924. [Annotated scanned copy]
- Eric Weisstein's World of Mathematics, Harmonic Number
-
List([1..35], n-> NumeratorRat(Sum([1..n], k-> 1/k)/(n+1))); # G. C. Greubel, Jul 03 2019
-
[Numerator(HarmonicNumber(n)/(n+1)): n in [1..35]]; // G. C. Greubel, Jul 03 2019
-
H := proc(a, b) option remember; local m, p, q, r, s;
if b - a <= 1 then return 1, a fi; m := iquo(a + b, 2);
p, q := H(a, m); r, s := H(m, b); p*s + q*r, q*s; end:
A002547 := proc(n) H(1, n+1); numer(%[1]/(%[2]*(n+1))) end:
seq(A002547(n), n=1..30); # Peter Luschny, Jul 11 2019
-
a[n_]:= Numerator[HarmonicNumber[n]/(n+1)]; Table[a[n], {n, 35}] (* modified by G. C. Greubel, Jul 03 2019 *)
-
h(n) = sum(k=1, n, 1/k);
vector(35, n, numerator(h(n)/(n+1))) \\ G. C. Greubel, Jul 03 2019
-
A002547(n)=numerator(A001008(n)/(n+1)) \\ M. F. Hasler, Jul 03 2019
-
[numerator(harmonic_number(n)/(n+1)) for n in (1..35)] # G. C. Greubel, Jul 03 2019
More terms from Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
A061172
Third column of Lucas bisection triangle (odd part).
Original entry on oeis.org
9, 120, 753, 3612, 15040, 57366, 206115, 709152, 2360943, 7659870, 24340184, 76031100, 234116493, 712166952, 2143779645, 6394719216, 18923041360, 55601888562, 162350117703, 471371537040, 1361642740059
Offset: 0
-
I:=[9, 120, 753, 3612, 15040, 57366]; [n le 6 select I[n] else 9*Self(n-1)-30*Self(n-2)+45*Self(n-3)-30*Self(n-4)+9*Self(n-5) - Self(n-6): n in [1..30]]; // G. C. Greubel, Dec 21 2017
-
CoefficientList[Series[(3-2*x)*(4*x^3-9*x^2+15*x+3)/(1-3*x+x^2)^3, {x,0,50}], x] (* or *) LinearRecurrence[{9,-30,45,-30,9,-1}, {9, 120, 753, 3612, 15040, 57366}, 30] (* G. C. Greubel, Dec 21 2017 *)
-
x='x+O('x^30); Vec((3-2*x)*(4*x^3-9*x^2+15*x+3)/(1-3*x+x^2)^3) \\ G. C. Greubel, Dec 21 2017
A304589
a(n) = (n!)^3 * Sum_{k=1..n-1} 1/(k*(n-k))^3.
Original entry on oeis.org
0, 0, 8, 54, 1240, 70000, 7941968, 1589632128, 512918521344, 249820864339968, 174720109813751808, 168721560082538496000, 217977447876560510976000, 367117517435096337481728000, 788739873984137255456342016000, 2122296978948474538763602624512000
Offset: 0
-
List([0..20],n->Factorial(n)^3*Sum([1..n-1],k->1/(k*(n-k))^3)); # Muniru A Asiru, May 16 2018
-
seq(factorial(n)^3*add(1/(k*(n-k))^3,k=1..n-1),n=0..20); # Muniru A Asiru, May 16 2018
-
Table[n!^3*Sum[1/(k*(n-k))^3, {k, 1, n-1}], {n, 0, 20}]
CoefficientList[Series[PolyLog[3, x]^2, {x, 0, 20}], x] * Range[0,20]!^3
A304582
Denominator of Sum_{k=1..n-1} 1/(k*(n-k))^2.
Original entry on oeis.org
1, 1, 1, 2, 144, 72, 64800, 1800, 2822400, 3175200, 317520000, 635040, 11064936960, 15367968, 2545242860160, 14609174580000, 8310997094400, 259718659200, 24319016372851200, 75058692508800, 10838475198270720000, 2389883781218693760, 374701571140216320
Offset: 0
0, 0, 1, 1/2, 41/144, 13/72, 8009/64800, 161/1800, 190513/2822400, ...
-
CoefficientList[Series[PolyLog[2, x]^2, {x, 0, 25}], x]//Denominator
Table[Sum[1/(k*(n - k))^2, {k, 1, n - 1}], {n, 0, 25}]//Denominator
A061174
Fifth column of Lucas bisection triangle (odd part).
Original entry on oeis.org
15, 545, 7043, 57560, 365045, 1970905, 9520315, 42385132, 177293730, 705980760, 2701362950, 10001654350, 36020160943, 126701700755, 436709397085, 1478813477920, 4930328078835, 16212542696607
Offset: 0
A093762
Numerators of 1-2*HarmonicNumber(n)/(n+1).
Original entry on oeis.org
0, 0, 1, 1, 43, 3, 197, 499, 5471, 589, 82609, 7243, 1376527, 1530967, 1687123, 217033, 68127937, 1290761, 500679401, 107119657, 38046795, 1756445, 983477669, 622806889, 81955769933, 86074407533, 811851812797, 29280696293
Offset: 1
0, 0, 1/12, 1/6, 43/180, 3/10, 197/560, 499/1260, 5471/12600, ...
-
h:= 1:
A[1]:= 0:
for n from 2 to 50 do
h:= h+1/n;
A[n]:= numer(1-2*h/(n+1));
od:
seq(A[i],i=1..50); # Robert Israel, Oct 17 2018
-
Table[Numerator[1-2HarmonicNumber[n]/(n+1)],{n,30}] (* Harvey P. Dale, Oct 10 2013 *)
-
a(n) = numerator(1-2*sum(i=1, n, 1/i)/(n+1)) \\ Felix Fröhlich, Oct 17 2018
A061175
One half of sixth column of Lucas bisection triangle (odd part).
Original entry on oeis.org
9, 471, 8268, 85962, 662773, 4215123, 23440212, 118073914, 551281476, 2423731704, 10148667670, 40812739230, 158644493079, 599051383561, 2206150654944, 7949311477362, 28098758599203, 97645872621753
Offset: 0
Showing 1-8 of 8 results.
Comments