A052517 Number of ordered pairs of cycles over all n-permutations having two cycles.
0, 0, 2, 6, 22, 100, 548, 3528, 26136, 219168, 2053152, 21257280, 241087680, 2972885760, 39605518080, 566931294720, 8678326003200, 141468564787200, 2446811181158400, 44753976117043200, 863130293635276800
Offset: 0
Examples
a(3)=6 because we have the ordered pairs of cycles: ((1)(23)), ((23)(1)), ((2)(13)), ((13)(2)), ((3)(12)), ((12)(3)). - _Geoffrey Critzer_, Jun 13 2013 G.f. = 2*x^2 + 6*x^3 + 22*x^4 + 100*x^5 + 548*x^6 + 3528*x^7 + ...
References
- G. Boole, A Treatise On The Calculus of Finite Differences, Dover, 1960, p. 30.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 83
Crossrefs
Programs
-
Magma
m:=25; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Log(1-x)^2 )); [0,0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // G. C. Greubel, May 13 2019 -
Maple
pairsspec := [S,{S=Prod(B,B),B=Cycle(Z)},labeled]: seq(combstruct[count](pairsspec,size=n), n=0..20); # Typos fixed by Johannes W. Meijer, Oct 16 2009
-
Mathematica
Flatten[{0,Table[(n+1)!*Sum[1/(k*(n+1-k)),{k,1,n}],{n,0,20}]}] (* Vaclav Kotesovec, Oct 08 2012 *) With[{m = 25}, CoefficientList[Series[Log[1-x]^2, {x,0,m}], x]*Range[0, m]!] (* G. C. Greubel, May 13 2019 *)
-
PARI
{a(n) = if( n<0, 0, n! * sum(k=1, n-1, 1 / (k * (n - k))))};
-
Sage
m = 25; T = taylor(log(1-x)^2, x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 13 2019
Formula
E.g.f.: (log(1 - x))^2. - Michael Somos, Feb 05 2004
a(n) ~ 2*(n-1)!*log(n)*(1+gamma/log(n)), where gamma is Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 08 2012
a(n) = Sum_{k=1..n-1} 2*k*|S1(n-1,k)| = 2*|S1(n,2)|. - Olivier Gérard, Oct 23 2012
0 = a(n) * n^2 - a(n+1) * (2*n+1) + a(n+2) for all n in Z. - Michael Somos, Apr 23 2014
0 = a(n)*(a(n+1) - 7*a(n+2) + 6*a(n+3) - a(n+4)) + a(n+1)*(a(n+1) - 6*a(n+2) + 4*a(n+3)) + a(n+2)*(-3*a(n+2)) if n>0. - Michael Somos, Apr 23 2014
For n>=2, a(n) = (n-2)! * Sum_{i=1..n-1} Sum_{j=1..n-1} (i+j)/(i*j). - Pedro Caceres, Feb 14 2021
Extensions
Name improved by Geoffrey Critzer, Jun 13 2013
Comments