A052517
Number of ordered pairs of cycles over all n-permutations having two cycles.
Original entry on oeis.org
0, 0, 2, 6, 22, 100, 548, 3528, 26136, 219168, 2053152, 21257280, 241087680, 2972885760, 39605518080, 566931294720, 8678326003200, 141468564787200, 2446811181158400, 44753976117043200, 863130293635276800
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
a(3)=6 because we have the ordered pairs of cycles: ((1)(23)), ((23)(1)), ((2)(13)), ((13)(2)), ((3)(12)), ((12)(3)). - _Geoffrey Critzer_, Jun 13 2013
G.f. = 2*x^2 + 6*x^3 + 22*x^4 + 100*x^5 + 548*x^6 + 3528*x^7 + ...
- G. Boole, A Treatise On The Calculus of Finite Differences, Dover, 1960, p. 30.
Equals, for n=>2, the second right hand column of
A028421.
-
m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Log(1-x)^2 )); [0,0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // G. C. Greubel, May 13 2019
-
pairsspec := [S,{S=Prod(B,B),B=Cycle(Z)},labeled]: seq(combstruct[count](pairsspec,size=n), n=0..20); # Typos fixed by Johannes W. Meijer, Oct 16 2009
-
Flatten[{0,Table[(n+1)!*Sum[1/(k*(n+1-k)),{k,1,n}],{n,0,20}]}] (* Vaclav Kotesovec, Oct 08 2012 *)
With[{m = 25}, CoefficientList[Series[Log[1-x]^2, {x,0,m}], x]*Range[0, m]!] (* G. C. Greubel, May 13 2019 *)
-
{a(n) = if( n<0, 0, n! * sum(k=1, n-1, 1 / (k * (n - k))))};
-
m = 25; T = taylor(log(1-x)^2, x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 13 2019
A304589
a(n) = (n!)^3 * Sum_{k=1..n-1} 1/(k*(n-k))^3.
Original entry on oeis.org
0, 0, 8, 54, 1240, 70000, 7941968, 1589632128, 512918521344, 249820864339968, 174720109813751808, 168721560082538496000, 217977447876560510976000, 367117517435096337481728000, 788739873984137255456342016000, 2122296978948474538763602624512000
Offset: 0
-
List([0..20],n->Factorial(n)^3*Sum([1..n-1],k->1/(k*(n-k))^3)); # Muniru A Asiru, May 16 2018
-
seq(factorial(n)^3*add(1/(k*(n-k))^3,k=1..n-1),n=0..20); # Muniru A Asiru, May 16 2018
-
Table[n!^3*Sum[1/(k*(n-k))^3, {k, 1, n-1}], {n, 0, 20}]
CoefficientList[Series[PolyLog[3, x]^2, {x, 0, 20}], x] * Range[0,20]!^3
A304581
Numerator of Sum_{k=1..n-1} 1/(k*(n-k))^2.
Original entry on oeis.org
0, 0, 1, 1, 41, 13, 8009, 161, 190513, 167101, 13371157, 21857, 316786853, 371449, 52598187029, 260957190289, 129548894873, 3562512061, 295728132584141, 814542451061, 105590441859671453, 21013691164284241, 2988054680665783, 5623939943287, 1567371864703176307
Offset: 0
0, 0, 1, 1/2, 41/144, 13/72, 8009/64800, 161/1800, 190513/2822400, ...
-
CoefficientList[Series[PolyLog[2, x]^2, {x, 0, 25}], x]//Numerator
Table[Sum[1/(k*(n - k))^2, {k, 1, n - 1}], {n, 0, 25}]//Numerator
A304582
Denominator of Sum_{k=1..n-1} 1/(k*(n-k))^2.
Original entry on oeis.org
1, 1, 1, 2, 144, 72, 64800, 1800, 2822400, 3175200, 317520000, 635040, 11064936960, 15367968, 2545242860160, 14609174580000, 8310997094400, 259718659200, 24319016372851200, 75058692508800, 10838475198270720000, 2389883781218693760, 374701571140216320
Offset: 0
0, 0, 1, 1/2, 41/144, 13/72, 8009/64800, 161/1800, 190513/2822400, ...
-
CoefficientList[Series[PolyLog[2, x]^2, {x, 0, 25}], x]//Denominator
Table[Sum[1/(k*(n - k))^2, {k, 1, n - 1}], {n, 0, 25}]//Denominator
A370225
a(n) = n!^2 * [x^n] polylog(2,x)^3.
Original entry on oeis.org
0, 0, 0, 36, 432, 7500, 191700, 6899592, 334858944, 21143500992, 1687177771200, 166164785309952, 19807714583407872, 2811642170175940608, 468723024212650002432, 90691236890980830683136, 20158684374653040962764800, 5101828835401918167928012800, 1458612909355515900114154291200
Offset: 0
-
CoefficientList[Series[PolyLog[2, x]^3, {x, 0, 20}], x] * Range[0, 20]!^2
Table[n!^2 * Sum[Sum[1/(k*(j-k))^2, {k, 1, j-1}] * 1/(n-j)^2, {j, 1, n-1}], {n, 0, 20}]
A370226
a(n) = n!^2 * [x^n] polylog(2,x)^4.
Original entry on oeis.org
0, 0, 0, 0, 576, 14400, 424800, 16405200, 827179584, 53370793728, 4311612000000, 427527300499200, 51134102684222976, 7266620131443459072, 1211052516384021083136, 234033301581064751001600, 51924413277653839769124864, 13111663349134716037934874624, 3739245464888523341104099885056
Offset: 0
-
CoefficientList[Series[PolyLog[2, x]^4, {x, 0, 20}], x] * Range[0, 20]!^2
Table[n!^2 * Sum[Sum[1/(k*(j-k))^2, {k, 1, j-1}] * Sum[1/(k*(n-j-k))^2, {k, 1, n-j-1}], {j, 1, n-1}], {n, 0, 20}]
A304654
a(n) = (n!)^2 * Sum_{k=1..n-1} 1/(k^2*(n-k)).
Original entry on oeis.org
0, 0, 4, 27, 328, 6500, 192216, 7952112, 438941952, 31185057024, 2772643115520, 301622403456000, 39413353102848000, 6091955683706880000, 1099401414283210752000, 229088914497045356544000, 54589580461769879715840000, 14750581694440372638842880000
Offset: 0
-
Table[(n!)^2 * Sum[1/(k^2*(n-k)), {k, 1, n-1}], {n, 0, 20}]
A304655
a(n) = (n!)^3 * Sum_{k=1..n-1} 1/(k^3*(n-k)^2).
Original entry on oeis.org
0, 0, 8, 81, 2480, 175000, 23825904, 5563712448, 2051674085376, 1124193889529856, 873600549068759040, 927968580453961728000, 1307864687259363065856000, 2386263863328126193631232000, 5521179117888960788194394112000, 15917227342113559040727019683840000
Offset: 0
-
Table[(n!)^3 * Sum[1/(k^3*(n-k)^2), {k, 1, n-1}], {n, 0, 20}]
Showing 1-8 of 8 results.
Comments