cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A302827 a(n) = (n!)^2 * Sum_{k=1..n-1} 1/(k*(n-k))^2.

Original entry on oeis.org

0, 0, 4, 18, 164, 2600, 64072, 2272032, 109735488, 6930012672, 554528623104, 54840436992000, 6568892183808000, 937223951339520000, 157057344897601536000, 30545188599606047539200, 6823697557721234964480000, 1735362552287102663393280000
Offset: 0

Views

Author

Vaclav Kotesovec, May 15 2018

Keywords

Crossrefs

Programs

  • GAP
    List([0..20],n->Factorial(n)^2*Sum([1..n-1],k->1/(k*(n-k))^2)); # Muniru A Asiru, May 16 2018
  • Maple
    seq(factorial(n)^2*add(1/(k*(n-k))^2,k=1..n-1),n=0..20); # Muniru A Asiru, May 16 2018
  • Mathematica
    Table[n!^2*Sum[1/(k*(n-k))^2, {k, 1, n-1}], {n, 0, 20}]
    CoefficientList[Series[PolyLog[2, x]^2, {x, 0, 20}], x] * Range[0,20]!^2

Formula

Recurrence: n*(2*n - 3)*a(n) = (n-1)*(6*n^3 - 25*n^2 + 33*n - 12)*a(n-1) - (n-2)^3*(6*n^3 - 29*n^2 + 42*n - 15)*a(n-2) + (n-3)^4*(n-2)^3*(2*n - 1)*a(n-3).
a(n) / (n!)^2 ~ Pi^2/(3*n^2) + 4*log(n)/n^3.

A370226 a(n) = n!^2 * [x^n] polylog(2,x)^4.

Original entry on oeis.org

0, 0, 0, 0, 576, 14400, 424800, 16405200, 827179584, 53370793728, 4311612000000, 427527300499200, 51134102684222976, 7266620131443459072, 1211052516384021083136, 234033301581064751001600, 51924413277653839769124864, 13111663349134716037934874624, 3739245464888523341104099885056
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 12 2024

Keywords

Comments

In general, for m >= 1, [x^n] polylog(2,x)^m ~ m*zeta(2)^(m-1)/n^2 = m * Pi^(2*m-2) / (6^(m-1) * n^2).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[PolyLog[2, x]^4, {x, 0, 20}], x] * Range[0, 20]!^2
    Table[n!^2 * Sum[Sum[1/(k*(j-k))^2, {k, 1, j-1}] * Sum[1/(k*(n-j-k))^2, {k, 1, n-j-1}], {j, 1, n-1}], {n, 0, 20}]

Formula

a(n)/(n!)^2 ~ Pi^6 / (54*n^2).
Showing 1-2 of 2 results.