A028421
Triangle read by rows: T(n, k) = (k+1)*A132393(n+1, k+1), for 0 <= k <= n.
Original entry on oeis.org
1, 1, 2, 2, 6, 3, 6, 22, 18, 4, 24, 100, 105, 40, 5, 120, 548, 675, 340, 75, 6, 720, 3528, 4872, 2940, 875, 126, 7, 5040, 26136, 39396, 27076, 9800, 1932, 196, 8, 40320, 219168, 354372, 269136, 112245, 27216, 3822, 288, 9
Offset: 0
Peter Wiggen (wiggen(AT)math.psu.edu)
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10
------------------------------------------------------------------------------------
0: 1
1: 1 2
2: 2 6 3
3: 6 22 18 4
4: 24 100 105 40 5
5: 120 548 675 340 75 6
6: 720 3528 4872 2940 875 126 7
7: 5040 26136 39396 27076 9800 1932 196 8
8: 40320 219168 354372 269136 112245 27216 3822 288 9
9: 362880 2053152 3518100 2894720 1346625 379638 66150 6960 405 10
10: 3628800 21257280 38260728 33638000 17084650 5412330 1104411 145200 11880 550 11
... - _Wolfdieter Lang_, Nov 23 2018
Row sums give
A000254(n+1), n >= 0.
The asymptotic expansion of E(x,m=2,n) leads to
A000254 (n=1),
A001705 (n=2),
A001711 (n=3),
A001716 (n=4),
A001721 (n=5),
A051524 (n=6),
A051545 (n=7),
A051560 (n=8),
A051562 (n=9),
A051564 (n=10),
A093905 (triangle) and
A165674 (triangle).
-
A028421 := proc(n,k) (-1)^(n+k)*(k+1)*Stirling1(n+1,k+1) end:
seq(seq(A028421(n,k), k=0..n), n=0..8);
# Johannes W. Meijer, Oct 07 2009, Revised Sep 09 2012
egf := (1 - t)^(-x - 1)*(1 - x*log(1 - t)):
ser := series(egf, t, 16): coefft := n -> expand(coeff(ser,t,n)):
seq(seq(n!*coeff(coefft(n), x, k), k = 0..n), n = 0..8); # Peter Luschny, Jun 12 2022
-
f[n_, k_] = (k + 1) StirlingS1[n + 1, k + 1] // Abs; Flatten[Table[f[n, k], {n, 0, 9}, {k, 0, n}]][[1 ;; 47]] (* Jean-François Alcover, Jun 01 2011, after formula *)
-
# uses[riordan_square from A321620]
riordan_square(-ln(1 - x), 10, True) # Peter Luschny, Jan 03 2019
A225479
Triangle read by rows, the ordered Stirling cycle numbers, T(n, k) = k!* s(n, k); n >= 0 k >= 0.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 2, 6, 6, 0, 6, 22, 36, 24, 0, 24, 100, 210, 240, 120, 0, 120, 548, 1350, 2040, 1800, 720, 0, 720, 3528, 9744, 17640, 21000, 15120, 5040, 0, 5040, 26136, 78792, 162456, 235200, 231840, 141120, 40320, 0, 40320, 219168, 708744, 1614816
Offset: 0
[n\k][0, 1, 2, 3, 4, 5, 6]
[0] 1,
[1] 0, 1,
[2] 0, 1, 2,
[3] 0, 2, 6, 6,
[4] 0, 6, 22, 36, 24,
[5] 0, 24, 100, 210, 240, 120,
[6] 0, 120, 548, 1350, 2040, 1800, 720.
...
T(4,2) = 22: The table below shows the compositions of 4 into two parts.
n = 4 Composition Weight 4!*Weight
3 + 1 1/3 8
1 + 3 1/3 8
2 + 2 1/2*1/2 6
= =
total 22
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, table 245.
-
A225479 := proc(n, k) option remember;
if k > n or k < 0 then return(0) fi;
if n = 0 and k = 0 then return(1) fi;
k*A225479(n-1, k-1) + (n-1)*A225479(n-1, k) end;
for n from 0 to 9 do seq(A225479(n, k), k = 0..n) od;
-
t[n_, k_] := k!*StirlingS1[n, k] // Abs; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 02 2013 *)
-
T(n,k)={k!*abs(stirling(n,k,1))} \\ Andrew Howroyd, Jul 27 2020
-
def A225479(n, k): return factorial(k)*stirling_number1(n, k)
for n in (0..6): [A225479(n,k) for k in (0..n)]
A302827
a(n) = (n!)^2 * Sum_{k=1..n-1} 1/(k*(n-k))^2.
Original entry on oeis.org
0, 0, 4, 18, 164, 2600, 64072, 2272032, 109735488, 6930012672, 554528623104, 54840436992000, 6568892183808000, 937223951339520000, 157057344897601536000, 30545188599606047539200, 6823697557721234964480000, 1735362552287102663393280000
Offset: 0
-
List([0..20],n->Factorial(n)^2*Sum([1..n-1],k->1/(k*(n-k))^2)); # Muniru A Asiru, May 16 2018
-
seq(factorial(n)^2*add(1/(k*(n-k))^2,k=1..n-1),n=0..20); # Muniru A Asiru, May 16 2018
-
Table[n!^2*Sum[1/(k*(n-k))^2, {k, 1, n-1}], {n, 0, 20}]
CoefficientList[Series[PolyLog[2, x]^2, {x, 0, 20}], x] * Range[0,20]!^2
A052748
Expansion of e.g.f.: -(log(1-x))^3.
Original entry on oeis.org
0, 0, 0, 6, 36, 210, 1350, 9744, 78792, 708744, 7036200, 76521456, 905507856, 11589357312, 159580302336, 2352940786944, 36994905688320, 617953469022720, 10929614667747840, 204073497562936320, 4011658382046919680, 82822558521844224000, 1791791417179298304000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Cycle(Z),S=Prod(B,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
with(combinat):seq(stirling1(j, 3)*3!*(-1)^(j+1), j=0..50); # Leonid Bedratyuk, Aug 07 2012
-
a(n) = {3!*stirling(n,3,1)*(-1)^(n+1)} \\ Andrew Howroyd, Jul 27 2020
Name changed and terms a(20) and beyond from
Andrew Howroyd, Jul 27 2020
A101613
(2n)! * Sum[k=n..2n, 1/k].
Original entry on oeis.org
3, 26, 684, 35664, 3068640, 392722560, 69878833920, 16484477184000, 4976250951168000, 1870345490614272000, 856314330237628416000, 469109144339151224832000, 302956190548293037916160000
Offset: 1
A304589
a(n) = (n!)^3 * Sum_{k=1..n-1} 1/(k*(n-k))^3.
Original entry on oeis.org
0, 0, 8, 54, 1240, 70000, 7941968, 1589632128, 512918521344, 249820864339968, 174720109813751808, 168721560082538496000, 217977447876560510976000, 367117517435096337481728000, 788739873984137255456342016000, 2122296978948474538763602624512000
Offset: 0
-
List([0..20],n->Factorial(n)^3*Sum([1..n-1],k->1/(k*(n-k))^3)); # Muniru A Asiru, May 16 2018
-
seq(factorial(n)^3*add(1/(k*(n-k))^3,k=1..n-1),n=0..20); # Muniru A Asiru, May 16 2018
-
Table[n!^3*Sum[1/(k*(n-k))^3, {k, 1, n-1}], {n, 0, 20}]
CoefficientList[Series[PolyLog[3, x]^2, {x, 0, 20}], x] * Range[0,20]!^3
A052753
Expansion of e.g.f.: log(1-x)^4.
Original entry on oeis.org
0, 0, 0, 0, 24, 240, 2040, 17640, 162456, 1614816, 17368320, 201828000, 2526193824, 33936357312, 487530074304, 7463742249600, 121367896891776, 2089865973021696, 37999535417459712, 727710096185266176, 14642785817771802624, 308902349883623731200, 6818239581643475251200
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Cycle(Z),S=Prod(B,B,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
CoefficientList[Series[(Log[1-x])^4, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
-
x='x+O('x^30); concat(vector(4), Vec(serlaplace((log(1-x))^4))) \\ G. C. Greubel, Aug 30 2018
-
a(n) = {4!*stirling(n,4,1)*(-1)^n} \\ Andrew Howroyd, Jul 27 2020
A101609
a(n) = n! * Sum_{k=1..floor(n/2)} 1/k.
Original entry on oeis.org
0, 2, 6, 36, 180, 1320, 9240, 84000, 756000, 8285760, 91143360, 1173553920, 15256200960, 226040855040, 3390612825600, 56865153945600, 966707617075200, 18112111963545600, 344130127307366400, 7125892746964992000
Offset: 1
A101610
n! * Sum[k=1..ceiling(n/2), 1/k].
Original entry on oeis.org
1, 2, 9, 36, 220, 1320, 10500, 84000, 828576, 8285760, 97796160, 1173553920, 16145775360, 226040855040, 3554072121600, 56865153945600, 1006228442419200, 18112111963545600, 356294637348249600
Offset: 1
-
Table[n!Sum[1/k,{k,1,Ceiling[n/2]}],{n,20}] (* Harvey P. Dale, Apr 25 2011 *)
A101611
a(n) = n! * Sum_{k=ceiling(n/2)..n} 1/k.
Original entry on oeis.org
1, 3, 5, 26, 94, 684, 3828, 35664, 270576, 3068640, 29400480, 392722560, 4546558080, 69878833920, 948550176000, 16484477184000, 256697973504000, 4976250951168000, 87435019510272000, 1870345490614272000
Offset: 1
-
Rest@Table[CoefficientList[Series[(Log[1-x]-x*Log[1-x^2])/(x-1),{x, 0, 20}],x][[n]](n-1)!,{n, 1, 20}] (* Benedict W. J. Irwin, Apr 25 2017 *)
-
a(n) = n! * sum(k=ceil(n/2), n, 1/k); \\ Michel Marcus, Apr 25 2017
-
import math
from sympy import factorial
def a(n): return factorial(n)*sum([1/k for k in range(int(math.ceil(n/2)), n + 1)]) # Indranil Ghosh, Apr 25 2017
Showing 1-10 of 21 results.
Comments