A052748
Expansion of e.g.f.: -(log(1-x))^3.
Original entry on oeis.org
0, 0, 0, 6, 36, 210, 1350, 9744, 78792, 708744, 7036200, 76521456, 905507856, 11589357312, 159580302336, 2352940786944, 36994905688320, 617953469022720, 10929614667747840, 204073497562936320, 4011658382046919680, 82822558521844224000, 1791791417179298304000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Cycle(Z),S=Prod(B,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
with(combinat):seq(stirling1(j, 3)*3!*(-1)^(j+1), j=0..50); # Leonid Bedratyuk, Aug 07 2012
-
a(n) = {3!*stirling(n,3,1)*(-1)^(n+1)} \\ Andrew Howroyd, Jul 27 2020
Name changed and terms a(20) and beyond from
Andrew Howroyd, Jul 27 2020
A052753
Expansion of e.g.f.: log(1-x)^4.
Original entry on oeis.org
0, 0, 0, 0, 24, 240, 2040, 17640, 162456, 1614816, 17368320, 201828000, 2526193824, 33936357312, 487530074304, 7463742249600, 121367896891776, 2089865973021696, 37999535417459712, 727710096185266176, 14642785817771802624, 308902349883623731200, 6818239581643475251200
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Cycle(Z),S=Prod(B,B,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
CoefficientList[Series[(Log[1-x])^4, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
-
x='x+O('x^30); concat(vector(4), Vec(serlaplace((log(1-x))^4))) \\ G. C. Greubel, Aug 30 2018
-
a(n) = {4!*stirling(n,4,1)*(-1)^n} \\ Andrew Howroyd, Jul 27 2020
A052767
Expansion of e.g.f.: -(log(1-x))^5.
Original entry on oeis.org
0, 0, 0, 0, 0, 120, 1800, 21000, 235200, 2693880, 32319000, 410031600, 5519487600, 78864820320, 1194924450720, 19166592681600, 324817601472000, 5803921108010880, 109115988701293440, 2154085473710580480, 44566174481427360000, 964537418717406213120, 21799797542483649131520
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Cycle(Z),S=Prod(B,B,B,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
With[{nn=20},CoefficientList[Series[-(Log[1-x])^5,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 14 2019 *)
-
a(n) = {5!*stirling(n,5,1)*(-1)^(n+1)} \\ Andrew Howroyd, Jul 27 2020
A052779
Expansion of e.g.f.: (log(1-x))^6.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 720, 15120, 231840, 3265920, 45556560, 649479600, 9604465200, 148370508000, 2402005525920, 40797624067200, 726963917097600, 13580328282393600, 265689107448756480, 5437099866285377280, 116229410301685651200, 2591985252922277184000, 60218914823672258142720
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Cycle(Z),S=Prod(B,B,B,B,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
a(n) = {6!*stirling(n,6,1)*(-1)^n} \\ Andrew Howroyd, Jul 27 2020
Name changed and terms a(20) and beyond from
Andrew Howroyd, Jul 27 2020
A225475
Triangle read by rows, k!*s_2(n, k) where s_m(n, k) are the Stirling-Frobenius cycle numbers of order m; n >= 0, k >= 0.
Original entry on oeis.org
1, 1, 1, 3, 4, 2, 15, 23, 18, 6, 105, 176, 172, 96, 24, 945, 1689, 1900, 1380, 600, 120, 10395, 19524, 24278, 20880, 12120, 4320, 720, 135135, 264207, 354662, 344274, 241080, 116760, 35280, 5040, 2027025, 4098240, 5848344, 6228096, 4993296, 2956800, 1229760
Offset: 0
[n\k][ 0, 1, 2, 3, 4, 5]
[0] 1,
[1] 1, 1,
[2] 3, 4, 2,
[3] 15, 23, 18, 6,
[4] 105, 176, 172, 96, 24,
[5] 945, 1689, 1900, 1380, 600, 120.
-
SFCO[n_, k_, m_] := SFCO[n, k, m] = If[ k > n || k < 0, Return[0], If[ n == 0 && k == 0, Return[1], Return[ k*SFCO[n - 1, k - 1, m] + (m*n - 1)*SFCO[n - 1, k, m]]]]; Table[ SFCO[n, k, 2], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 02 2013, translated from Sage *)
-
@CachedFunction
def SF_CO(n, k, m):
if k > n or k < 0 : return 0
if n == 0 and k == 0: return 1
return k*SF_CO(n-1, k-1, m) + (m*n-1)*SF_CO(n-1, k, m)
for n in (0..8): [SF_CO(n, k, 2) for k in (0..n)]
A344498
a(n) = |Stirling1(n, floor(n/2))| * floor(n/2)!.
Original entry on oeis.org
1, 0, 1, 2, 22, 100, 1350, 9744, 162456, 1614816, 32319000, 410031600, 9604465200, 148370508000, 3986353491120, 72622987557120, 2202727143576960, 46243059751848960, 1563325251963995520, 37165349757066935040, 1385918755006365216000, 36804377751967949760000
Offset: 0
-
a := n -> abs(Stirling1(n, floor(n/2))) * floor(n/2)! :
seq(a(n), n = 0..21);
-
a[n_] := Abs @ StirlingS1[n, Floor[n/2]] * Floor[n/2]!; Array[a, 22, 0] (* Amiram Eldar, May 22 2021 *)
A372347
a(n) = Sum_{j=0..n} p(n - j, j) where p(n, x) = Sum_{k=0..n} k! * Stirling1(n, k) * x^k.
Original entry on oeis.org
1, 1, 2, 4, 12, 52, 334, 2866, 31902, 439510, 7372150, 147351714, 3460114654, 94073798158, 2926942982790, 103161703653178, 4084845678671086, 180433041383154870, 8836346732709839206, 477142911818397135058, 28265453383985064929934
Offset: 0
-
p := n -> local k; add(k!*Stirling1(n, k)*x^k, k = 0..n):
a := n -> local j; add(subs(x=j, p(n - j)), j = 0..n):
seq(a(n), n = 0..21);
A376873
a(n) = n! * |Stirling1(2*n, n)|.
Original entry on oeis.org
1, 1, 22, 1350, 162456, 32319000, 9604465200, 3986353491120, 2202727143576960, 1563325251963995520, 1385918755006365216000, 1500893038955163069216000, 1949720475921117012670233600, 2992360962617823634351113600000, 5356716752093284789859604692736000
Offset: 0
-
a := n -> n! * abs(Stirling1(2*n, n)):
seq(a(n), n = 0..14);
-
Array[#!*Abs[StirlingS1[2 #, #]] &, 14] (* Michael De Vlieger, Oct 29 2024 *)
-
a(n) = n!*abs(stirling(2*n, n, 1)); \\ Michel Marcus, Oct 29 2024
-
from sympy.functions.combinatorial.numbers import factorial, stirling
def A376873(n): return factorial(n)*stirling(n<<1,n,kind=1) # Chai Wah Wu, Oct 29 2024
A225474
Triangle read by rows, k!*2^k*s_2(n, k) where s_m(n, k) are the Stirling-Frobenius cycle numbers of order m; n >= 0, k >= 0.
Original entry on oeis.org
1, 1, 2, 3, 8, 8, 15, 46, 72, 48, 105, 352, 688, 768, 384, 945, 3378, 7600, 11040, 9600, 3840, 10395, 39048, 97112, 167040, 193920, 138240, 46080, 135135, 528414, 1418648, 2754192, 3857280, 3736320, 2257920, 645120, 2027025, 8196480, 23393376, 49824768, 79892736
Offset: 0
[n\k][ 0, 1, 2, 3, 4, 5]
[0] 1,
[1] 1, 2,
[2] 3, 8, 8,
[3] 15, 46, 72, 48,
[4] 105, 352, 688, 768, 384,
[5] 945, 3378, 7600, 11040, 9600, 3840.
-
SFCSO[n_, k_, m_] := SFCSO[n, k, m] = If[k>n || k<0, 0, If[n == 0 && k == 0, 1, m*k*SFCSO[n-1, k-1, m] + (m*n-1)*SFCSO[n-1, k, m]]]; Table[SFCSO[n, k, 2], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 05 2014, translated from Sage *)
-
@CachedFunction
def SF_CSO(n, k, m):
if k > n or k < 0 : return 0
if n == 0 and k == 0: return 1
return m*k*SF_CSO(n-1, k-1, m) + (m*n-1)*SF_CSO(n-1, k, m)
for n in (0..8): [SF_CSO(n, k, 2) for k in (0..n)]
A356654
Triangle read by rows. T(n, k) = k! * Sum_{j=k..n} Lah(n, j) * Stirling2(j, k), where Lah(n, k) = A271703(n, k).
Original entry on oeis.org
1, 0, 1, 0, 3, 2, 0, 13, 18, 6, 0, 73, 158, 108, 24, 0, 501, 1510, 1590, 720, 120, 0, 4051, 15962, 23040, 15960, 5400, 720, 0, 37633, 186270, 345786, 325920, 168000, 45360, 5040, 0, 394353, 2385182, 5469492, 6579384, 4594800, 1884960, 423360, 40320
Offset: 0
Triangle T(n, k) begins:
[0] 1;
[1] 0, 1;
[2] 0, 3, 2;
[3] 0, 13, 18, 6;
[4] 0, 73, 158, 108, 24;
[5] 0, 501, 1510, 1590, 720, 120;
[6] 0, 4051, 15962, 23040, 15960, 5400, 720;
[7] 0, 37633, 186270, 345786, 325920, 168000, 45360, 5040;
[8] 0, 394353, 2385182, 5469492, 6579384, 4594800, 1884960, 423360, 40320;
-
L := (n, k) -> `if`(n = k, 1, binomial(n-1, k-1) * n! / k!):
T := (n, k) -> k! * add(L(n, j) * Stirling2(j, k), j = k..n):
seq(seq(T(n, k), k = 0..n), n = 0..9);
-
T[n_, k_] := k! * Sum[Binomial[n, j] * FactorialPower[n - 1, n - j] * StirlingS2[j, k], {j, k, n}]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, Sep 01 2022 *)
Showing 1-10 of 11 results.
Comments