A002553 Coefficients for numerical differentiation.
1, 24, 640, 7168, 294912, 2883584, 54525952, 167772160, 36507222016, 326417514496, 5772436045824, 50577534877696, 1759218604441600, 15199648742375424, 261208778387488768, 2233785415175766016, 101457092405402533888
Offset: 0
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
- W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]
- T. R. Van Oppolzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten, Vol. 2, Engelmann, Leipzig, 1880, p. 23, (see denominators of numbers named M(1,2k+1)).
Programs
-
Maple
with(combinat): a:=n->add(mul(k, k=j), j=choose([seq((2*i-1)^2, i=1..n)], n))*(-1)^(n-1)/(2^(2*n)*(2*n+1)!):seq(a(n), n=0..20); # Sean A. Irvine, after Ruperto Corso
Formula
a(n) = denom(A001818(n)*(-1)^(n-1)/(2^(2*n)*(2*n+1)!)). - Sean A. Irvine, Mar 29 2014
a(n) is the denominator of(-1)^(n-1)*Cn-1{1^2..(2n-1)^2}/((2n+1)!*2^(2n)), where Cn{1^2..(2n+1)^2} is equal to 1 when n=0, otherwise, it is the sum of the products of all possible combinations, of size n, of the numbers (2k+1)^2 with k=0,1,..,n. - Sean A. Irvine, after Ruperto Corso, Mar 29 2014
Extensions
More terms from Sean A. Irvine, Mar 29 2014