A002628 Number of permutations of length n without 3-sequences.
1, 1, 2, 5, 21, 106, 643, 4547, 36696, 332769, 3349507, 37054436, 446867351, 5834728509, 82003113550, 1234297698757, 19809901558841, 337707109446702, 6094059760690035, 116052543892621951, 2325905946434516516, 48937614361477154273, 1078523843237914046247
Offset: 0
Keywords
Examples
a(4) = 21 because only 1234, 2341, and 4123 contain 3-sequences. - _Emeric Deutsch_, Sep 06 2010
References
- Jackson, D. M.; Reilly, J. W. Permutations with a prescribed number of p-runs. Ars Combinatoria 1 (1976), number 1, 297-305.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450
- D. M. Jackson and R. C. Read, A note on permutations without runs of given length, Aequationes Math. 17 (1978), no. 2-3, 336-343.
- J. Riordan, Permutations without 3-sequences, Bull. Amer. Math. Soc., 51 (1945), 745-748.
Crossrefs
Column k=0 of A047921.
Programs
-
Maple
seq(coeff(convert(series(add(m!*((t-t^3)/(1-t^3))^m,m=0..50),t,50), polynom), t,n),n=0..25); # Pab Ter, Nov 06 2005 d[-1]:= 0: for n from 0 to 51 do d[n] := n*d[n-1]+(-1)^n end do: a:= proc(n) add(binomial(n-k, k)*(d[n-k]+d[n-k-1]), k = 0..floor((1/2)*n)) end proc: seq(a(n), n = 0..25); # Emeric Deutsch, Sep 06 2010 # third Maple program: a:= proc(n) option remember; `if`(n<5, [1$2, 2, 5, 21][n+1], (n-3)*a(n-1)+(3*n-6)*a(n-2)+ (4*n-12)*a(n-3)+(3*n-12)*a(n-4)+(n-5)*a(n-5)) end: seq(a(n), n=0..25); # Alois P. Heinz, Jul 21 2019
-
Mathematica
d[0] = 1; d[n_] := d[n] = n d[n - 1] + (-1)^n; T[n_, k_] := If[n == 0 && k == 0, 1, If[k <= n/2, Binomial[n - k, k] d[n + 1 - k]/(n - k), 0]]; a[n_] := Sum[T[n, k], {k, 0, Quotient[n, 2]}]; a /@ Range[0, 25] (* Jean-François Alcover, May 23 2020 *)
Formula
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*(d(n-k) + d(n-k-1)) for n>0, where d(j) = A000166(j) are the derangement numbers. - Emeric Deutsch, Sep 06 2010
Extensions
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 06 2005
a(0)=1 prepended by Alois P. Heinz, Jul 21 2019
Comments