A002636 Number of ways of writing n as an unordered sum of at most 3 nonzero triangular numbers.
1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 3, 2, 1, 2, 3, 2, 2, 2, 1, 4, 3, 2, 2, 2, 2, 3, 3, 1, 4, 4, 2, 2, 3, 2, 3, 4, 2, 3, 3, 2, 4, 3, 2, 4, 4, 2, 4, 4, 1, 4, 5, 1, 2, 3, 4, 6, 4, 3, 2, 5, 2, 3, 3, 3, 6, 5, 2, 2, 5, 3, 5, 4, 2, 4, 5, 3, 4, 5, 2, 4, 6, 2, 6, 3, 3, 6, 3, 2, 3, 7, 3, 6, 6, 2, 4, 6, 3, 2
Offset: 0
Examples
0 : empty sum 1 : 1 2 : 1+1 3 : 3 = 1+1+1 4 : 3+1 5 : 3+1+1 6 : 6 = 3+3 7 : 6+1 = 3+3+1 ... 13 : 10 + 3 = 6 + 6 + 1, so a(13) = 2.
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102, eq. (8).
- D. H. Lehmer, Review of Loria article, Math. Comp. 2 (1947), 301-302.
- G. Loria, Sulla scomposizione di un intero nella somma di numeri poligonali. (Italian) Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 1, (1946). 7-15.
- Mel Nathanson, Additive Number Theory: The Classical Bases, Graduate Texts in Mathematics, Volume 165, Springer-Verlag, 1996. See Chapter 1.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- Gino Loria, Sulla scomposizione di un intero nella somma di numeri poligonali. (Italian). Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 1, (1946). 7-15. Also D. H. Lehmer, Review of Loria article, Math. Comp. 2 (1947), 301-302. [Annotated scanned copies]
- Eric T. Mortenson, A Kronecker-type identity and the representations of a number as a sum of three squares, arXiv:1702.01627 [math.NT], 2017.
- James A. Sellers, Partitions Excluding Specific Polygonal Numbers As Parts, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.4.
Programs
-
Maple
# reuses code in A000217 A002636 := proc(n) local a,i,Ti, j,Tj, Tk ; a := 0 ; for i from 0 do Ti := A000217(i) ; if Ti > n then break ; end if; for j from i do Tj := A000217(j) ; if Ti+Tj > n then break ; end if; Tk := n-Ti-Tj ; if Tk >= Tj and isA000217(Tk) then a := a+1 ; end if; if Tk < Tj then break ; end if; end do: end do: a ; end proc: seq(A002636(n),n=0..40) ; # R. J. Mathar, May 26 2025
-
Mathematica
a = Table[ n(n + 1)/2, {n, 0, 15} ]; b = {0}; c = Table[ 0, {100} ]; Do[ b = Append[ b, a[ [ i ] ] + a[ [ j ] ] + a[ [ k ] ] ], {k, 1, 15}, {j, 1, k}, {i, 1, j} ]; b = Delete[ b, 1 ]; b = Sort[ b ]; l = Length[ b ]; Do[ If[ b[ [ n ] ] < 100, c[ [ b[ [ n ] ] + 1 ] ]++ ], {n, 1, l} ]; c
-
PARI
first(n)=my(v=vector(n+1),A,B,C); for(a=0,n, A=a*(a+1)/2; if(A>n, break); for(b=0,a, B=A+b*(b+1)/2; if(B>n, break); for(c=0,b, C=B+c*(c+1)/2; if(C>n, break); v[C+1]++))); v \\ Charles R Greathouse IV, Jun 23 2017
Extensions
More terms from Robert G. Wilson v, Sep 20 2001
Entry revised by N. J. A. Sloane, Feb 25 2007
Comments