cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002649 Quintan primes: p = (x^5 - y^5)/(x - y).

Original entry on oeis.org

5, 31, 211, 1031, 2801, 4651, 5261, 6841, 8431, 14251, 17891, 20101, 21121, 22621, 22861, 26321, 30941, 33751, 36061, 41141, 46021, 48871, 51001, 58411, 61051, 88741, 92821, 103801, 109141, 114641, 118061, 125591, 170101, 176641, 209801
Offset: 1

Views

Author

Keywords

Comments

5 is a term because x^4 + y*x^3 + y^2*x^2 + y^3*x + y^4 = 5 when x=y=1. - N. J. A. Sloane, May 12 2014

References

  • A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929; see Vol. 2, p. 200.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002650.

Programs

  • PARI
    m=10^6; v=[5]; for(x=1, m^(1/4), for(y=1, x-1, n=(x^5-y^5)/(x-y); if(n<=m && isprime(n), v=concat(v,n)))); vecsort(v) \\ Jens Kruse Andersen, Jul 14 2014

Extensions

a(26)-a(35) from Sean A. Irvine, May 08 2014