cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002652 Theta series of Kleinian lattice Z[(1 + sqrt(-7))/ 2] in 1 complex (or 2 real) dimensions.

Original entry on oeis.org

1, 2, 4, 0, 6, 0, 0, 2, 8, 2, 0, 4, 0, 0, 4, 0, 10, 0, 4, 0, 0, 0, 8, 4, 0, 2, 0, 0, 6, 4, 0, 0, 12, 0, 0, 0, 6, 4, 0, 0, 0, 0, 0, 4, 12, 0, 8, 0, 0, 2, 4, 0, 0, 4, 0, 0, 8, 0, 8, 0, 0, 0, 0, 2, 14, 0, 0, 4, 0, 0, 0, 4, 8, 0, 8, 0, 0, 4, 0, 4, 0, 2, 0, 0, 0, 0, 8, 0, 16, 0, 0, 0, 12, 0, 0, 0, 0, 0, 4, 4, 6, 0
Offset: 0

Views

Author

Keywords

Comments

In other words, theta series of lattice with Gram matrix [2, 1; 1, 4].
The number of integer solutions (x, y) to x^2 + x*y + 2*y^2 = n.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 4*x^2 + 6*x^4 + 2*x^7 + 8*x^8 + 2*x^9 + 4*x^11 + 4*x^14 + ...
Theta series of lattice with Gram matrix [2, 1; 1, 4] = 1 + 2*q^2 + 4*q^4 + 6*q^8 + 2*q^14 + 8*q^16 + 2*q^18 + 4*q^22 + 4*q^28 + 10*q^32 + 4*q^36 + 8*q^44 + 4*q^46 + 2*q^50 + 6*q^56 + 4*q^58 + 12*q^64 + 6*q^72 + ...
		

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 467, Entry 5(i).

Crossrefs

Number of integer solutions to f(x,y) = n where f(x,y) is the principal binary quadratic form with discriminant d: A004016 (d=-3), A004018 (d=-4), this sequence (d=-7), A033715 (d=-8), A028609 (d=-11), A028641 (d=-19), A138811 (d=-43).

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(14), 1), 85); A[1] + 2*A[2] + 4*A[3] + 6*A[5]; /* Michael Somos, Jun 10 2015 */
  • Mathematica
    f[d_] := KroneckerSymbol[-7, d]; a[n_] := 2*Total[f /@ Divisors[n]]; a[0]=1; Table[a[n], {n, 0, 101}] (* Jean-François Alcover, Nov 08 2011, after Michael Somos *)
    a[ n_] := If[ n < 1, Boole[n == 0], 2 Sum[ KroneckerSymbol[ -7, d], { d, Divisors[ n]}]]; (* Michael Somos, Jun 10 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], 2 DivisorSum[ n, KroneckerSymbol[ -7, #] &]]; (* Michael Somos, Jun 10 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], Length @ FindInstance[ n == x^2 + x y + 2 y^2, {x, y}, Integers, 10^9]]; (* Michael Somos, Jun 10 2015 *)
  • PARI
    {a(n) = my(t2, t3); if( n<1, n==0, t2 = 2 * sum( n=1, (sqrtint( max(0, 4*n - 7)) + 1)\2, x^(n*n - n)); t3 = 1 + 2 * sum( n=1, sqrtint(n), x^(n*n)); polcoeff( t3 * subst(t3, x, x^7) + x^2 * t2 * subst(t2, x, x^7), n))};
    
  • PARI
    {a(n) = my(t); if( n<1, n==0, 2 * issquare(n) + 2 * sum( y=1, sqrtint(n*4\7), 2 * issquare(t = 4*n - 7*y^2) - (t==0)))}; /* Michael Somos, Sep 20 2004 */
    
  • PARI
    {a(n) = my(A, A1, A2); if( n<0, 0, A = x * O(x^n); A1 = eta(x + A) * eta(x^7 + A); A2 = eta(x^2 + A) * eta(x^14 + A); polcoeff( (A1^3 + 4 * x * A2^3) / (A1 * A2), n))}; /* Michael Somos, May 28 2005 */
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * qfrep( [ 2, 1; 1, 4], n, 1)[n])}; /* Michael Somos, Jun 03 2005 */
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * sumdiv( n, d, kronecker( -7, d)))}; /* Michael Somos, Oct 07 2005 */
    

Formula

G.f.: theta_3(q) * theta_3(q^7) + theta_2(q) * theta_2(q^7).
G.f.: 1 + 2 * Sum_{k>0} Kronecker(-7, k) * x^k / (1 - x^k). - Michael Somos, Mar 17 2012
Expansion of phi(x) * phi(x^7) + 4 * x^2 * psi(x^2) * psi(x^14) = phi(-x) * phi(-x^7) + 4 * x * psi(x) * psi(x^7) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Mar 17 2012
Expansion of ((eta(q) * eta(q^7))^3 + 4 * (eta(q^2) * eta(q^14))^3) / (eta(q) * eta(q^2) * eta(q^7) * eta(q^14)) in powers of q. - Michael Somos, May 28 2005
Moebius transform is period 7 sequence [ 2, 2, -2, 2, -2, -2, 0, ...]. - Michael Somos, Oct 07 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 + 5 * v^2 + 4 * w^2 + 2 * u*w - 4 * u*v - 8 * v*w. - Michael Somos, Sep 20 2004
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^3*u6 + 2*u2^3*u3 + 18*u1*u3*u6^2 + 18*u2*u3^2*u6 + 6*u1*u2^2*u6 + 3*u1^2*u2*u3 - 3*u2*u3^3 - 18*u2*u3*u6^2 - 6*u1*u6^3 - 9*u1*u3^2*u6 - 6*u1*u2^2*u3 - 6*u1^2*u2*u6. - Michael Somos, Jun 03 2005
From Michael Somos, Mar 17 2012: (Start)
G.f. is a period 1 Fourier series which satisfies f(-1 / (7 t)) = 7^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(n) = 2 * A035182(n) unless n = 0. a(7*n + 5) = a(7*n + 6) = a(9*n + 3) = a(9*n + 6) = 0. a(2*n + 1) = 2 * A133827(n). a(9*n) = a(n). (End)
a(0) = 1, a(n) = 2 * b(n) for n > 0, where b() is multiplicative with b(7^e) = 1, b(p^e) = e + 1 if p == 1, 2, 4 (mod 7), b(p^e) = (1 + (-1)^e) / 2 if p == 3, 5, 6 (mod 7). - Michael Somos, Jun 10 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = 2*Pi/sqrt(7) = 2.3748208... . - Amiram Eldar, Dec 16 2023