A002681 Numerators of coefficients for repeated integration.
1, -1, 1, -23, 263, -133787, 157009, -16215071, 2689453969, -26893118531, 5600751928169, -3340626516019229, 885646796787371, -859202038021848149, 2766671664340938282413, -319473088311274492668499, 436677987276721765221113, -191960665849028069896950959123
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- H. E. Salzer, Coefficients for repeated integration with central differences, Journal of Mathematics and Physics, 28 (1949), 54-61.
Programs
-
Maple
M:=n->(2/(2*n+1)!)*int(t*product(t^2-k^2,k=1..n),t=0..1): A:=n->((n+1)/2)*M(n)+(2*n+2)*M(n+1): seq(numer(A(n)),n=0..18); # Emeric Deutsch, Jan 25 2005
-
Mathematica
M[n_] := (2/(2n+1)!) Integrate[t Product[t^2-k^2, {k, 1, n}], {t, 0, 1}]; A[n_] := ((n+1)/2) M[n] + (2n+2) M[n+1]; Table[Numerator[A[n]], {n, 0, 18}] (* Jean-François Alcover, Oct 04 2021, after Maple code *)
Formula
a(n) is the numerator of ((n+1)/2)M(n) + (2n+2)M(n+1), where M(n) = (2/(2n+1)!)*Integral_{t=0..1} (t*Product_{k=1..n} (t^2 - k^2)). - Emeric Deutsch, Jan 25 2005
Extensions
More terms from Emeric Deutsch, Jan 25 2005