cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A002682 Denominators of coefficients for repeated integration.

Original entry on oeis.org

3, 45, 252, 28350, 1496880, 3405402000, 17513496000, 7815397590000, 5543722023840000, 235212205868640000, 206559082608278400000, 516914104227216696000000, 572581776990147724800000
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    M:=n->(2/(2*n+1)!)*int(t*product(t^2-k^2,k=1..n),t=0..1): A:=n->((n+1)/2)*M(n)+(2*n+2)*M(n+1): seq(denom(A(n)),n=0..15); # Emeric Deutsch, Jan 25 2005
  • Mathematica
    M[n_] := (2/(2n+1)!) Integrate[t Product[t^2-k^2, {k, 1, n}], {t, 0, 1}];
    A[n_] := ((n+1)/2) M[n] + (2n+2) M[n+1];
    Table[Denominator[A[n]], {n, 0, 15}] (* Jean-François Alcover, Oct 04 2021, after Maple code *)

Formula

a(n) is the denominator of ((n+1)/2)M(n) + (2n+2)M(n+1), where M(n) = (2/(2n+1)!)*Integral_{t=0..1} (t*Product_{k=1..n} (t^2 - k^2)). - Emeric Deutsch, Jan 25 2005

Extensions

More terms from Emeric Deutsch, Jan 25 2005

A348220 Numerators of coefficients for numerical integration of certain differential systems (Array A(i,k) read by ascending antidiagonals).

Original entry on oeis.org

2, 2, 0, 2, 2, 1, 2, 4, 1, -1, 2, 6, 7, 0, 29, 2, 8, 19, 1, -1, -14, 2, 10, 37, 8, -1, 1, 1139, 2, 12, 61, 9, 29, 0, -37, -41, 2, 14, 91, 64, 269, -1, 1, 8, 32377, 2, 16, 127, 125, 1079, 14, 1, -1, -119, -3956, 2, 18, 169, 72, 2999, 33, -37, 0, 127, 9, 2046263
Offset: 0

Views

Author

Keywords

Comments

It can be noticed that the sequence A002681/A002682 shows as these 4 subsequences: A(i, 2i+2), -A(i, 2i+3), A(i+1, 2i+2) and A(i+2, 2i+3), for i >= 0.
Columns: A007395, A005843, A003215 (numerators).

Examples

			Array begins:
2, 0,    1/3,  -1/3,    29/90, -14/45,  1139/3780,   -41/140, ...
2, 2,    1/3,     0,    -1/90,   1/90,   -37/3780,     8/945, ...
2, 4,    7/3,   1/3,    -1/90,      0,      1/756,    -1/756, ...
2, 6,   19/3,   8/3,    29/90,  -1/90,      1/756,         0, ...
2, 8,   37/3,     9,   269/90,  14/45,   -37/3780,     1/756, ...
2, 10,  61/3,  64/3,  1079/90,  33/10,  1139/3780,    -8/945, ...
2, 12,  91/3, 125/3,  2999/90, 688/45, 13613/3780,    41/140, ...
2, 14, 127/3,    72,  6749/90, 875/18,  14281/756,   736/189, ...
2, 16, 169/3, 343/3, 13229/90,  618/5,  51031/756, 17225/756, ...
...
		

References

  • Paul Curtz, Intégration numérique des systèmes différentiels à conditions initiales. Note no. 12 du Centre de Calcul Scientifique de l'Armement, page 127, 1969, Arcueil. Later CELAR. Now DGA Maitrise de l'Information 35170 Bruz.

Crossrefs

Cf. A002681, A002682, A348221 (denominators).

Programs

  • Mathematica
    A[i_ /; i >= 0, k_ /; k >= 0] := A[i, k] = If[i == 0, (1/k!) Integrate[ Product[u+j, {j, -k+1, 0}], {u, -1, 1}], A[i-1, k-1] + A[i-1, k]];
    A[, ] = 0;
    Table[A[i-k, k] // Numerator, {i, 0, 10}, {k, 0, i}] // Flatten
  • PARI
    array(nn) = {my(m = matrix(nn, nn)); for (k=0, nn-1, m[1, k+1] = bestappr(intnum(x=-1, 1, prod(j=1-k, 0, x+j)))/k!; ); for (j=1, nn-1, for (k=0, nn-1, m[j+1, k+1] = if (k>0, m[j,k], 0) + m[j, k+1];);); apply(numerator, m);} \\ Michel Marcus, Oct 08 2021

Formula

Numerators of A(i,k) where:
A(i,k) = (1/k!)*Integral_(-1,1) Product(u+j, (j, -k+1 .. 0)) du for i=0.
A(i,k) = A(i-1, k-1) + A(i-1, k) for i>0.

A348221 Denominators of coefficients for numerical integration of certain differential systems (Array A(i,k) read by ascending antidiagonals).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 3, 1, 90, 1, 1, 3, 3, 90, 45, 1, 1, 3, 3, 90, 90, 3780, 1, 1, 3, 1, 90, 1, 3780, 140, 1, 1, 3, 3, 90, 90, 756, 945, 113400, 1, 1, 3, 3, 90, 45, 756, 756, 16200, 14175, 1, 1, 3, 1, 90, 10, 3780, 1, 113400, 1400, 7484400
Offset: 0

Views

Author

Keywords

Comments

See A348220.

Examples

			Array begins:
2, 0,    1/3,  -1/3,    29/90, -14/45,  1139/3780,   -41/140, ...
2, 2,    1/3,     0,    -1/90,   1/90,   -37/3780,     8/945, ...
2, 4,    7/3,   1/3,    -1/90,      0,      1/756,    -1/756, ...
2, 6,   19/3,   8/3,    29/90,  -1/90,      1/756,         0, ...
2, 8,   37/3,     9,   269/90,  14/45,   -37/3780,     1/756, ...
2, 10,  61/3,  64/3,  1079/90,  33/10,  1139/3780,    -8/945, ...
2, 12,  91/3, 125/3,  2999/90, 688/45, 13613/3780,    41/140, ...
2, 14, 127/3,    72,  6749/90, 875/18,  14281/756,   736/189, ...
2, 16, 169/3, 343/3, 13229/90,  618/5,  51031/756, 17225/756, ...
...
		

References

  • Paul Curtz, Intégration numérique des systèmes différentiels à conditions initiales. Note no. 12 du Centre de Calcul Scientifique de l'Armement, page 127, 1969.

Crossrefs

Cf. A002681, A002682, A348220 (numerators).

Programs

  • Mathematica
    A[i_ /; i >= 0, k_ /; k >= 0] := A[i, k] = If[i == 0, (1/k!)  Integrate[ Product[u + j, {j, -k + 1, 0}], {u, -1, 1}], A[i - 1, k - 1] + A[i - 1, k]]; A[, ] = 0;
    Table[A[i - k, k] // Denominator, {i, 0, 10}, {k, 0, i}] // Flatten

Formula

Denominators of A(i,k) where:
A(i,k) = (1/k!)*Integral_(-1,1) Product(u+j, (j, -k+1 .. 0)) du for i=0.
A(i,k) = A(i-1, k-1) + A(i-1, k) for i>0.
Showing 1-3 of 3 results.