cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002706 Theta series of 6-dimensional lattice A_6^(2) (other names for this lattice or the corresponding quadratic form are LAMBDA_{3,lambda}, P_6^(5), phi_6, F_14).

Original entry on oeis.org

1, 0, 42, 56, 84, 168, 280, 336, 462, 336, 840, 672, 1176, 1176, 1386, 1008, 1848, 2016, 2058, 2520, 3528, 2408, 3108, 2688, 4760, 3024, 5880, 4592, 6468, 4704, 5040, 6720, 6930, 6832, 10080, 7224, 7812, 7392, 12600, 7056, 14280, 11760, 12040, 9408
Offset: 0

Views

Author

Keywords

Comments

In Elkies 1999 the g.f. is denoted by theta_L. - Michael Somos, Nov 09 2014

Examples

			G.f. = 1 + 42*q^2 + 56*q^3 + 84*q^4 + 168*q^5 + 280*q^6 + 336*q^7 + 462*q^8 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, Intro. to 3rd ed.
  • N. Elkies, The Klein quartic in number theory, pp. 51-101 of S. Levy, ed., The Eightfold Way, Cambridge Univ. Press, 1999. MR1722413 (2001a:11103). See page 72.

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(7), 3), 44); A[1] + 42*A[3] + 56*A[4] + 84*A[5] + 168*A[6] + 280*A[7];  /* Michael Somos, Nov 09 2014 */
  • Mathematica
    s = (EllipticTheta[3, 0, q] *EllipticTheta[3, 0, q^7] + EllipticTheta[2, 0, q]*EllipticTheta[2, 0, q^7])^3 - 6q*(QPochhammer[q] *QPochhammer[q^7])^3 + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 04 2015, from first formula *)
  • PARI
    {a(n) = local(A, t1, t2, t3); if( n<1, n==0, A = x * O(x^n); t1 = x * (eta(x + A) * eta(x^7 + A))^3; t2 = sum(k=1, (sqrtint(4*n + 1)  + 1)\2, 2 * x^(k*k - k), A); t3 = sum(k=1, sqrtint(n), 2 * x^(k*k), 1 + A); A = x * O(x^(n\7)); polcoeff( (t3 * subst(t3 + A, x, x^7) + x^2 * t2 * subst(t2 + A, x, x^7))^3 - 6*t1, n))}; /* Michael Somos, Jun 03 2005 */
    
  • Sage
    A = ModularForms( Gamma1(7), 3, prec=25) . basis(); (-21*A[0] + 4*A[1] + 21*A[2] + 105*A[3] + 224*A[4] + 441*A[5] + 672*A[6])/4 # Michael Somos, May 25 2014
    

Formula

a(n) = A002653(n) - 6*A002656(n).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) is a homogeneous degree 6 polynomial with 28 terms. - Michael Somos, Jun 03 2005