cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002730 Number of equivalence classes of binary sequences of primitive period n.

Original entry on oeis.org

2, 1, 2, 3, 4, 8, 8, 18, 18, 38, 28, 142, 72, 234, 360, 669, 520, 2606, 1608, 7338, 8856, 19370, 16768, 94308, 67556, 216200, 277512, 815310, 662368, 4499852, 2311468, 8465496, 13045076, 31592762, 40937592, 159769394, 103197488, 401912086
Offset: 1

Views

Author

Keywords

Comments

The number of equivalence classes of primitive sequences of period p, taking values in a set with b elements, is given by: N'(p) = sum_{d|p} mobius(p/d)*N(d) where N denotes the number of equivalence classes in the set of all sequences with period p, taking b values (see A002729). - Pab Ter (pabrlos2(AT)yahoo.com), Oct 22 2005

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. C. Titsworth, Equivalence classes of periodic sequences, Illinois J. Math., 8 (1964), 266-270.

Crossrefs

Cf. A002729.

Programs

  • Maple
    with(numtheory): E:=proc(k,L) if(L=1) then RETURN(1) else RETURN(order(k,L)) fi end; M:=proc(k,L) local s,EkL: EkL:=E(k,L): if(k>1) then s:=(k^EkL-1)/(k-1): RETURN(L*EkL/igcd(L,s)) else RETURN(L*EkL/igcd(L,EkL)) fi end; C:=proc(k,t,p) local u: RETURN(add(M(k,p/igcd(p,u*(k-1)+t))^(-1),u=0..p-1)) :end; N:=proc(p) options remember: local s,t,k: if(p=1) then RETURN(2) fi: s:=0: for t from 0 to p-1 do for k from 1 to p-1 do if igcd(p,k)=1 then s:=s+2^C(k,t,p) fi od od: RETURN(s/(p*phi(p))):end; Nprimitive:=proc(p) options remember: local d: RETURN(add(mobius(p/d)*N(d),d=divisors(p))): end; seq(Nprimitive(p),p=1..51); (Pab Ter)
  • Mathematica
    max = 38; m[k_, n_] := (s = 1; Do[ If[ Mod[s, n] == 0, Return[e], s = s + k^e ] , {e, 1, max}]); c[k_, t_, n_] := Sum[ m[k, n/GCD[n, u*(k-1) + t]]^(-1), {u, 0, n-1}]; (* b = A002729 *) b[n_] := b[n] = (s = 0; Do[ If[ GCD[n, k] == 1 , s = s + 2^c[k, t, n]] , {k, 1, n-1}, {t, 0, n-1}]; s / (n*EulerPhi[n]) ); b[0] = 1; b[1] = 2; a[n_] := Sum[ MoebiusMu[n/d]*b[d], {d, Divisors[n]}]; Table[a[n], {n, 1, max}] (* Jean-François Alcover, Dec 06 2011, after Maple *)

Formula

Reference gives formula.

Extensions

More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 22 2005