cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002763 Number of bipartite partitions.

Original entry on oeis.org

4, 11, 26, 52, 98, 171, 289, 467, 737, 1131, 1704, 2515, 3661, 5246, 7430, 10396, 14405, 19760, 26884, 36269, 48583, 64614, 85399, 112170, 146526, 190362, 246099, 316621, 405556, 517224, 657012, 831320, 1048055, 1316611, 1648486, 2057324, 2559719, 3175309
Offset: 0

Views

Author

Keywords

References

  • M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 11.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember;
          `if`(n>k, 0, 1) +`if`(isprime(n), 0,
          add(`if`(d>k, 0, b(n/d, d)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> b((45*2^n)$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, May 26 2013
  • Mathematica
    b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; a[n_] := b[45*2^n, 45*2^n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 20 2014, after Alois P. Heinz *)
    nmax = 100; CoefficientList[Series[(4 - x - 3*x^2 + x^3) / ((1 - x)^3 * (1 + x)) / Product[1 - x^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 07 2017 *)

Formula

a(n) = a(n-1) + A000041(n) + A000070(n) + A000291(n), for n>0 - Alford Arnold, Dec 10 2007
From Vaclav Kotesovec, Jan 07 2017: (Start)
G.f.: (4 - x - 3*x^2 + x^3) / ((1-x)^3 * (1+x)) * Product_{k>=1} 1/(1-x^k).
a(n) ~ exp(Pi*sqrt(2*n/3)) * 3*sqrt(n)/(2*sqrt(2)*Pi^3).
(End)

Extensions

Extended beyond a(25) by Alois P. Heinz, May 26 2013