cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002791 a(n) = Sum_{d|n, d <= 4} d^2 + 4*Sum_{d|n, d>4} d.

Original entry on oeis.org

1, 5, 10, 21, 21, 38, 29, 53, 46, 65, 45, 102, 53, 89, 90, 117, 69, 146, 77, 161, 122, 137, 93, 230, 121, 161, 154, 217, 117, 278, 125, 245, 186, 209, 189, 354, 149, 233, 218, 353, 165, 374, 173, 329, 306, 281, 189, 486, 225, 365, 282, 385, 213, 470, 285, 473, 314, 353, 237, 662, 245, 377, 410, 501, 333, 566, 269, 497
Offset: 1

Views

Author

Keywords

References

  • Collected Papers, MIT Press, 1978, Vol. I, pp. 1364-1367.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A row of the array in A242639.

Programs

  • Maple
    with(numtheory):
    A:=proc(s,n) local d,s1,s2;
    s1:=0; s2:=0;
    for d in divisors(n) do
    if d <= s then s1:=s1+d^2 else s2:=s2+d; fi;  od:
    s1+s*s2; end;
    f:=s->[seq(A(s,n),n=1..80)];
    f(4);
  • Mathematica
    a[n_] := DivisorSum[n, #^2 &, # < 5 &] + 4 * DivisorSum[n, # &, # > 4 &]; Array[a, 70] (* Amiram Eldar, Aug 17 2019 *)

Formula

Conjectured: Inverse Moebius transform of g.f.: (x + 2x^2 + 2x^3 + 2x^4 - 3x^4) / (1 - x)^2. - Sean A. Irvine, May 16 2014
Conjectured: a(n) = 4 * sigma(n) - f(n mod 6) where f(0) = 10, f(1) = 3, f(2) = 7, f(3) = 6, f(4) = 7, f(5) = 3. - Sean A. Irvine, May 17 2014

Extensions

Edited by N. J. A. Sloane, May 21 2014