A002803 a(n) = (2n+4)!/(4!*n!*(n+1)!).
1, 15, 140, 1050, 6930, 42042, 240240, 1312740, 6928350, 35565530, 178474296, 878850700, 4259045700, 20359174500, 96172862400, 449608131720, 2082743551350, 9569730173850, 43651400793000, 197809768856700
Offset: 0
References
- C. Jordan, Calculus of Finite Differences. Budapest, 1939, p. 449.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B 18 (1975), 222-259.
Crossrefs
Cf. A020918.
Programs
-
Mathematica
Table[(2*n+4)!/(4!*n!*(n+1)!), {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Dec 13 2008 *)
Formula
G.f.: 2F1(5/2,3;2;4x) =(1+x)/(1-4x)^(7/2). - R. J. Mathar, Aug 09 2015
D-finite with recurrence n*(n+1)*a(n) -2*(n+2)*(2*n+3)*a(n-1)=0. - R. J. Mathar, Feb 08 2021