A002826 Number of precomplete Post functions of n variables.
1, 5, 18, 82, 643, 15182, 7848984, 549761932909, 10626621620680478174719, 1701411834605079120446041612364090304458, 79607061350691085453966118726400345961810854094316840855510985236799831016092
Offset: 1
Keywords
References
- S. V. Jablonskii, Some results in the theory of functional systems (Russian), in Proceedings of the International Congress of Mathematicians (Helsinki, 1978), pp. 963-971, Acad. Sci. Fennica, Helsinki, 1980.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian) Dokl. Akad. Nauk SSSR 186 1969 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622.
Links
- Ivo Rosenberg, The number of maximal closed classes in the set of functions over a finite domain, J. Combinatorial Theory Ser. A 14 (1973), 1-7.
- E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian), Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622. [Annotated scanned copy]
Formula
Extensions
More terms from Sean A. Irvine, Aug 25 2014