A279196 Number of polynomials of the form P(x,y) = 1 + (x+y-1) * Q(x,y) such that P(1,1) = n and both polynomials P and Q have nonnegative integer coefficients.
1, 1, 2, 5, 13, 36, 102, 295, 864, 2557, 7624, 22868, 68920, 208527, 632987, 1926752, 5878738, 17973523, 55050690, 168881464, 518818523, 1595878573, 4914522147, 15150038699, 46747391412, 144370209690, 446214862158, 1380161749537, 4271808447154, 13230257155092, 40999697820032
Offset: 1
Keywords
Examples
From _Peter Kagey_, Feb 03 2017 (Start): For n = 1 the a(1) = 1 solution is: 1 = 0(x + y - 1) + 1. For n = 2 the a(2) = 1 solution is: x + y = (x + y - 1) + 1. For n = 3 the a(3) = 2 solutions are: xy + x + y^2 = (y + 1)(x + y - 1) + 1; xy + y + x^2 = (x + 1)(x + y - 1) + 1. For n = 4 the a(4) = 5 solutions are: x^2 + 2xy + y^2 = (x + y + 1)(x + y - 1) + 1; x^2y + x^2 + xy^2 + y = (xy + x + 1)(x + y - 1) + 1; x^2y + xy^2 + x + y^2 = (xy + y + 1)(x + y - 1) + 1; xy^2 + xy + x + y^3 = (y^2 + y + 1)(x + y - 1) + 1; x^3 + x^2y + xy + y = (x^2 + x + 1)(x + y - 1) + 1. (End) [Corrected by _Luc Rousseau_, Jun 30 2023]
Links
- Luc Rousseau, Table of n, a(n) for n = 1..45
- R. K. Guy, Letter to N. J. A. Sloane, June 24 1971: front, back [Annotated scanned copy, with permission] See sequence "D".
- Luc Rousseau, a Java program for A279196, by degradation.
- Luc Rousseau, a Java + Prolog program for A279196, nonnegativity CLP version.
- Luc Rousseau, a Prolog program for A279196, divide and conquer, memoized version.
- Luc Rousseau, Illustration of the degradation process, n=1..5
- N. J. A. Sloane, Winter Fruits: New Problems from OEIS, Dec. 2016 - Jan. 2017 (part 1), 2017-01-26, (discussion from 6:23-10:00).
- N. J. A. Sloane, Winter Fruits: New Problems from the OEIS, Dec. 2016 - Jan. 2017 (slides)
Crossrefs
Cf. A363933.
Programs
-
Java
// See Rousseau link. (Java + Prolog) // See Rousseau link.
-
Prolog
% See Rousseau link.
Extensions
Definition corrected by Max Alekseyev, Jun 28 2023
a(10)-a(18) from Luc Rousseau, Jun 30 2023
a(19)-a(25) from Max Alekseyev, Jul 04 2023
a(26)-a(29) from Luc Rousseau, Jul 31 2023
a(30) from Luc Rousseau, Nov 10 2023
a(31) from Luc Rousseau, Dec 18 2023
Comments