A328647 Irregular triangular array read by rows: row n shows the coefficients of this polynomial of degree n: (1/n!)*(numerator of n-th derivative of (1+x)/(x^2-3x+1)).
1, 1, 4, -2, -1, 11, -12, 3, 1, 29, -44, 24, -4, -1, 76, -145, 110, -40, 5, 1, 199, -456, 435, -220, 60, -6, -1, 521, -1393, 1596, -1015, 385, -84, 7, 1, 1364, -4168, 5572, -4256, 2030, -616, 112, -8, -1, 3571, -12276, 18756, -16716, 9576, -3654, 924, -144
Offset: 0
Examples
First eight rows: 1, 1; 4, -2, -1; 11, -12, 3, 1; 29, -44, 24, -4, -1; 76, -145, 110, -40, 5, 1; 199, -456, 435, -220, 60, -6, -1; 521, -1393, 1596, -1015, 385, -84, 7, 1; 1364, -4168, 5572, -4256, 2030, -616, 112, -8, -1; First eight polynomials: 1 + x 4 - 2 x - x^2 11 - 12 x + 3 x^2 + x^3 29 - 44 x + 24 x^2 - 4 x^3 - x^4 76 - 145 x + 110 x^2 - 40 x^3 + 5 x^4 + x^5 199 - 456 x + 435 x^2 - 220 x^3 + 60 x^4 - 6 x^5 - x^6 521 - 1393 x + 1596 x^2 - 1015 x^3 + 385 x^4 - 84 x^5 + 7 x^6 + x^7 1364 - 4168 x + 5572 x^2 - 4256 x^3 + 2030 x^4 - 616 x^5 + 112 x^6 - 8 x^7 - x^8
Programs
-
Mathematica
g[x_, n_] := Numerator[ Factor[D[(1 + x)/(x^2 - 3 x + 1), {x, n}]]] Column[Expand[Table[g[x, n]/n!, {n, 0, 12}]]] (* polynomials *) h[n_] := CoefficientList[g[x, n]/n!, x] Table[h[n], {n, 0, 10}] Column[%] (* A328647 array *)
Comments