cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002887 The minimum number of nodes of a tree with a cutting center of n nodes.

Original entry on oeis.org

3, 4, 7, 10, 50
Offset: 1

Views

Author

Keywords

Comments

The cutting number of a node v in a graph G is the number of pairs of nodes {u,w} of G such that u!=v, w!=v, and every path from u to w contains v. The cutting number of a connected graph (including trees as considered here), is the maximum cutting number of any node in the graph. The cutting center of a graph is the set of nodes with cutting number equal to the cutting number of the graph. - Sean A. Irvine, Jan 16 2020

References

  • Frank Harary and Phillip A. Ostrand, How cutting is a cut point?, pp. 147-150 of R. K. Guy et al., editors, Combinatorial Structures and Their Applications (Proceedings Calgary Conference Jun 1969), Gordon and Breach, NY, 1970.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

More detailed name from R. J. Mathar, Jan 16 2020