cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002985 Number of trees in an n-node wheel.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 11, 20, 36, 64, 108, 179, 292, 464, 727, 1124, 1714, 2585, 3866, 5724, 8418, 12290, 17830, 25713, 36898, 52664, 74837, 105873, 149178, 209364, 292793, 407990, 566668, 784521, 1082848, 1490197, 2045093, 2798895, 3820629, 5202085
Offset: 1

Views

Author

Keywords

Comments

This is the number of nonequivalent spanning trees of the n-wheel graph up to isomorphism of the trees.

Examples

			All trees that span a wheel on 5 nodes are equivalent to one of the following:
      o         o         o
      |         | \     /   \
   o--o--o   o--o  o   o--o  o
      |         |           /
      o         o         o
		

References

  • F. Harary, P. E. O'Neil, R. C. Read and A. J. Schwenk, The number of trees in a wheel, in D. J. A. Welsh and D. R. Woodall, editors, Combinatorics. Institute of Mathematics and Its Applications. Southend-on-Sea, England, 1972, pp. 155-163.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    terms = 40;
    A003293[n_] := SeriesCoefficient[Product[(1-x^k)^(-Ceiling[k/2]), {k, 1, terms}], {x, 0, n}];
    A008804[n_] := SeriesCoefficient[1/((1-x)^4 (1+x)^2 (1+x^2)), {x, 0, n}];
    a[n_] := A003293[n-1] - A008804[n-3];
    Array[a, terms] (* Jean-François Alcover, Sep 02 2019 *)
  • PARI
    \\ here b(n) is A003293 and d(n) is A008804.
    b(n)={polcoeff( prod(k=1, n, (1-x^k+x*O(x^n))^-ceil(k/2)), n)}
    d(n)={(84+12*(-1)^n+6*I*((-I)^n-I^n)+(85+3*(-1)^n)*n+24*n^2+2*n^3)/96}
    a(n)=b(n-1)-d(n-3); \\ Andrew Howroyd, Oct 09 2017

Formula

a(n) = A003293(n-1) - A008804(n-3). - Andrew Howroyd, Oct 09 2017

Extensions

Terms a(32) and beyond from Andrew Howroyd, Oct 09 2017