A002985 Number of trees in an n-node wheel.
1, 1, 1, 2, 3, 6, 11, 20, 36, 64, 108, 179, 292, 464, 727, 1124, 1714, 2585, 3866, 5724, 8418, 12290, 17830, 25713, 36898, 52664, 74837, 105873, 149178, 209364, 292793, 407990, 566668, 784521, 1082848, 1490197, 2045093, 2798895, 3820629, 5202085
Offset: 1
Keywords
Examples
All trees that span a wheel on 5 nodes are equivalent to one of the following: o o o | | \ / \ o--o--o o--o o o--o o | | / o o o
References
- F. Harary, P. E. O'Neil, R. C. Read and A. J. Schwenk, The number of trees in a wheel, in D. J. A. Welsh and D. R. Woodall, editors, Combinatorics. Institute of Mathematics and Its Applications. Southend-on-Sea, England, 1972, pp. 155-163.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Andrew Howroyd, Derivation of formula.
- Eric Weisstein's World of Mathematics, Wheel Graph.
- Index entries for sequences related to trees
Programs
-
Mathematica
terms = 40; A003293[n_] := SeriesCoefficient[Product[(1-x^k)^(-Ceiling[k/2]), {k, 1, terms}], {x, 0, n}]; A008804[n_] := SeriesCoefficient[1/((1-x)^4 (1+x)^2 (1+x^2)), {x, 0, n}]; a[n_] := A003293[n-1] - A008804[n-3]; Array[a, terms] (* Jean-François Alcover, Sep 02 2019 *)
-
PARI
\\ here b(n) is A003293 and d(n) is A008804. b(n)={polcoeff( prod(k=1, n, (1-x^k+x*O(x^n))^-ceil(k/2)), n)} d(n)={(84+12*(-1)^n+6*I*((-I)^n-I^n)+(85+3*(-1)^n)*n+24*n^2+2*n^3)/96} a(n)=b(n-1)-d(n-3); \\ Andrew Howroyd, Oct 09 2017
Formula
Extensions
Terms a(32) and beyond from Andrew Howroyd, Oct 09 2017
Comments