cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002988 Number of trimmed trees with n nodes.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 2, 3, 6, 10, 21, 39, 82, 167, 360, 766, 1692, 3726, 8370, 18866, 43029, 98581, 227678, 528196, 1232541, 2888142, 6798293, 16061348, 38086682, 90607902, 216230205, 517482053, 1241778985, 2987268628, 7203242490
Offset: 0

Views

Author

Keywords

Comments

From Christian G. Bower, Dec 15 1999: (Start)
A trimmed tree is a tree with a forbidden limb of length 2.
A tree with a forbidden limb of length k is a tree where the path from any leaf inward hits a branching node or another leaf within k steps. (End)

References

  • K. L. McAvaney, personal communication.
  • A. J. Schwenk, Almost all trees are cospectral, pp. 275-307 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory):
    g:= proc(n) g(n):= `if`(n=0, 1, add(add(d*(g(d-1)-
          `if`(d=2, 1, 0)), d=divisors(j))*g(n-j), j=1..n)/n)
        end:
    a:= n-> `if`(n=0, 1, g(n-1)+(`if`(irem(n, 2, 'r')=0,
             g(r-1), 0)-add(g(i-1)*g(n-i-1), i=1..n-1))/2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 06 2014
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[Sum[d*(g[d-1]-If[d == 2, 1, 0]), {d, Divisors[j] }]*g[n-j], {j, 1, n}]/n]; a[n_] := If[n == 0, 1, g[n-1] + (If[Mod[n, 2] == 0, g[Quotient[n, 2]-1], 0] - Sum[g[i-1]*g[n-i-1], {i, 1, n-1}])/2]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)

Formula

G.f.: 1 + B(x) + (B(x^2) - B(x)^2)/2 where B(x) is the g.f. of A002955. - Christian G. Bower, Dec 15 1999
a(n) ~ c * d^n / n^(5/2), where d = 2.59952511060090659632378883695..., c = 0.3758284247032014502508501798... . - Vaclav Kotesovec, Aug 24 2014

Extensions

More terms from Christian G. Bower, Dec 15 1999