A002989 Number of n-node trees with a forbidden limb of length 3.
1, 1, 1, 1, 1, 2, 4, 7, 14, 28, 61, 131, 297, 678, 1592, 3770, 9096, 22121, 54451, 135021, 337651, 849698, 2152048, 5479408, 14022947, 36048514, 93061268, 241160180, 627179689, 1636448181, 4282964600, 11241488853, 29584389474
Offset: 0
Keywords
References
- A. J. Schwenk, Almost all trees are cospectral, pp. 275-307 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- A. J. Schwenk, Letter to N. J. A. Sloane, Aug 1972.
- Index entries for sequences related to trees
Programs
-
Maple
with(numtheory): g:= proc(n) g(n):= `if`(n=0, 1, add(add(d*(g(d-1)- `if`(d=3, 1, 0)), d=divisors(j))*g(n-j), j=1..n)/n) end: a:= n-> `if`(n=0, 1, g(n-1)+(`if`(irem(n, 2, 'r')=0, g(r-1), 0)-add(g(i-1)*g(n-i-1), i=1..n-1))/2): seq(a(n), n=0..40); # Alois P. Heinz, Jul 06 2014
-
Mathematica
g[n_] := g[n] = If[n == 0, 1, Sum[Sum[d*(g[d-1]-If[d == 3, 1, 0]), {d, Divisors[j] }]*g[n-j], {j, 1, n}]/n]; a[n_] := If[n == 0, 1, g[n-1] + (If[Mod[n, 2 ] == 0, g[Quotient[n, 2] - 1], 0] - Sum[g[i-1]*g[n-i-1], {i, 1, n-1}])/2]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 26 2015, after Alois P. Heinz *)
Formula
G.f.: 1 + B(x) + (B(x^2) - B(x)^2)/2 where B(x) is g.f. of A052321.
a(n) ~ c * d^n / n^(5/2), where d = 2.851157026715821487965080545784..., c = 0.463162985533004672966744142107... . - Vaclav Kotesovec, Aug 24 2014
Extensions
More terms, formula and comments from Christian G. Bower, Dec 15 1999
Comments