cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003013 E.g.f. 1 + x*exp(x) + x^2*exp(2*x).

Original entry on oeis.org

1, 1, 4, 15, 52, 165, 486, 1351, 3592, 9225, 23050, 56331, 135180, 319501, 745486, 1720335, 3932176, 8912913, 20054034, 44826643, 99614740, 220200981, 484442134, 1061158935, 2315255832, 5033164825
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[1+x Exp[x]+x^2 Exp[2x],{x,0,nn}],x] Range[0,nn]!] (* or *) Join[{1},LinearRecurrence[{8,-25,38,-28,8},{1,4,15,52,165},30]] (* Harvey P. Dale, Nov 01 2011 *)
  • PARI
    a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 8,-28,38,-25,8]^n*[1;1;4;15;52])[1,1] \\ Charles R Greathouse IV, Jun 23 2020

Formula

From Ralf Stephan, Sep 02 2003: (Start)
a(0) = 1, a(n) = (n^2 - n)*2^n/4 + n.
a(n) = A002999(n) - n = A001815(n) + n. (End)
O.g.f.: 1+x*(-1+4*x-8*x^2+6*x^3) / ( (x-1)^2*(2*x-1)^3 ). - R. J. Mathar, Mar 22 2011
a(n) = 8*a(n-1) - 25*a(n-2) + 38*a(n-3) - 28*a(n-4) + 8*a(n-5); a(0)=1, a(1)=1, a(2)=4, a(3)=15, a(4)=52, a(5)=165. - Harvey P. Dale, Nov 01 2011