A003023 "Length" of aliquot sequence for n.
0, 1, 1, 2, 1, 1, 1, 2, 3, 3, 1, 6, 1, 4, 4, 5, 1, 3, 1, 6, 2, 5, 1, 4, 2, 6, 2, 1, 1, 14, 1, 2, 5, 7, 2, 3, 1, 6, 2, 3, 1, 13, 1, 4, 6, 7, 1, 5, 3, 2, 3, 8, 1, 12, 2, 4, 2, 3, 1, 10, 1, 8, 2, 3, 2, 11, 1, 4, 3, 5, 1, 8, 1, 4, 4, 4, 2, 10, 1, 6, 4, 5, 1, 5, 2, 8, 6, 6, 1, 9, 3, 5, 3, 3, 3, 8, 1, 2, 3, 4, 1, 17
Offset: 1
Examples
Examples of trajectories: 1, 0, 0, ... 2, 1, 0, 0, ... 3, 1, 0, 0, ... (and similarly for any prime) 4, 3, 1, 0, 0, ... 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, ... (and similarly for any perfect number) 8, 7, 1, 0, 0, ... 9, 4, 3, 1, 0, 0, ... 12, 16, 15, 9, 4, 3, 1, 0, 0, ... 14, 10, 8, 7, 1, 0, 0, ... 25, 6, 6, 6, ... 28, 28, 28, ... (the next perfect number) 30, 42, 54, 66, 78, 90, 144, 259, 45, 33, 15, 9, 4, 3, 1, 0, 0, ... 42, 54, 66, 78, 90, 144, 259, 45, 33, 15, 9, 4, 3, 1, 0, 0, ...
References
- G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
- R. K. Guy, Unsolved Problems in Number Theory, B6.
- R. K. Guy and J. L. Selfridge, Interim report on aliquot series, pp. 557-580 of Proceedings Manitoba Conference on Numerical Mathematics. University of Manitoba, Winnipeg, Oct 1971.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..275 (fate of 276 is unknown)
- R. K. Guy and J. L. Selfridge, Interim report on aliquot series, pp. 557-580 of Proceedings Manitoba Conference on Numerical Mathematics. University of Manitoba, Winnipeg, Oct 1971. [Annotated scanned copy]
- F. Richman, Aliquot series: Abundant, deficient, perfect
- Eric Weisstein's World of Mathematics, Aliquot Sequence
- Wikipedia, Aliquot sequence
Crossrefs
Programs
-
Maple
f:=proc(n) local t1, i,j,k; t1:=[n]; for i from 2 to 50 do j:= t1[i-1]; k:=sigma(j)-j; t1:=[op(t1), k]; od: t1; end; # produces trajectory for n
-
Mathematica
f[x_] := (k++; DivisorSigma[1, x] - x); f[1] = 1; Table[k = 0; FixedPoint[f, n]; k, {n, 1, 102}] (* Jean-François Alcover, Jul 27 2011 *)
-
MuPAD
s := func(_plus(op(numlib::divisors(n)))-n,n): A003023 := proc(n) local i,T,m; begin m := n; i := 1; while T[ m ]<>1 and m<>1 do T[ m ] := 1; m := s(m); i := i+1 end_while; i-1 end_proc:
-
Scheme
(define (A003023 n) (let loop ((visited (list n)) (i 0)) (let ((next (A001065 (car visited)))) (cond ((zero? next) i) ((member next visited) (+ 1 i)) (else (loop (cons next visited) (+ 1 i))))))) (define (A001065 n) (- (A000203 n) n)) ;; For an implementation of A000203, see under that entry. ;; Antti Karttunen, Nov 03 2017
Extensions
More terms from Matthew Conroy, Jan 16 2006
Comments