A003051 Number of inequivalent sublattices of index n in hexagonal lattice, where two sublattices are equivalent if they are related by a rotation or reflection preserving the hexagonal lattice.
1, 1, 2, 3, 2, 3, 3, 5, 4, 4, 3, 8, 4, 5, 6, 9, 4, 8, 5, 10, 8, 7, 5, 15, 7, 8, 9, 13, 6, 14, 7, 15, 10, 10, 10, 20, 8, 11, 12, 20, 8, 18, 9, 17, 16, 13, 9, 28, 12, 17, 14, 20, 10, 22, 14, 25, 16, 16, 11, 34, 12, 17, 21, 27, 16, 26, 13, 24, 18, 26, 13, 40, 14
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- A. Altshuler, Construction and enumeration of regular maps on the torus, Discrete Math. 4 (1973), 201-217.
- A. Altshuler, Construction and enumeration of regular maps on the torus, Discrete Math. 4 (1973), 201-217. [Annotated and corrected scanned copy]
- M. Bernstein, N. J. A. Sloane and P. E. Wright, On Sublattices of the Hexagonal Lattice, Discrete Math. 170 (1997) 29-39 (Abstract, pdf, ps).
- Amihay Hanany, Domenico Orlando, and Susanne Reffert, Sublattice counting and orbifolds, High Energ. Phys., 2010 (2010), 51, arXiv.org:1002.2981 [hep-th] (see Table 3).
- Daejun Kim, Seok Hyeong Lee, and Seungjai Lee, Zeta functions enumerating subforms of quadratic forms, arXiv:2409.05625 [math.NT], 2024.
- W. Kurth, Enumeration of Platonic maps on the torus, Discrete Math. 61 (1986), 71-83.
- G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2
- John S. Rutherford, Sublattice enumeration. IV. Equivalence classes of plane sublattices by parent Patterson symmetry and colour lattice group type, Acta Cryst. (2009). A65, 156-163. [See Table 2].
- Andrey Zabolotskiy, Sublattices of the hexagonal lattice (illustrations for n = 1..7, 14)
- Andrey Zabolotskiy, Coweight lattice A^*_n and lattice simplices, arXiv:2003.10251 [math.CO], 2020.
- Index entries for sequences related to sublattices
- Index entries for sequences related to A2 = hexagonal = triangular lattice
Crossrefs
Programs
-
Mathematica
max = 73; A145390 = Drop[ CoefficientList[ Series[ Sum[(1 + Cos[n*Pi/2])*x^n/(1 - x^n), {n, 1, max}], {x, 0, max}], x], 1]; A002324[n_] := (dn = Divisors[n]; Count[dn, ?(Mod[#, 3] == 1 & )] - Count[dn, ?(Mod[#, 3] == 2 & )]); a[n_] := (DivisorSigma[1, n] + 2 A002324[n] + 3*A145390[[n]])/6; Table[a[n], {n, 1, max}] (* Jean-François Alcover, Oct 11 2011, after given formula *)
Formula
a(n) = Sum_{ m^2 | n } A003050(n/m^2).
a(n) = Sum_{ d|n } A112689(d+1). - Andrey Zabolotskiy, Aug 29 2019
a(n) = Sum_{ d|n } floor(d/6) + 1 - 1*[d == 2 or 6 (mod 12)] + 1*[d == 4 (mod 12)]. [Kurth] - Brahadeesh Sankarnarayanan, Feb 24 2023
Comments