cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A001615 Dedekind psi function: n * Product_{p|n, p prime} (1 + 1/p).

Original entry on oeis.org

1, 3, 4, 6, 6, 12, 8, 12, 12, 18, 12, 24, 14, 24, 24, 24, 18, 36, 20, 36, 32, 36, 24, 48, 30, 42, 36, 48, 30, 72, 32, 48, 48, 54, 48, 72, 38, 60, 56, 72, 42, 96, 44, 72, 72, 72, 48, 96, 56, 90, 72, 84, 54, 108, 72, 96, 80, 90, 60, 144, 62, 96, 96, 96, 84, 144, 68, 108, 96
Offset: 1

Views

Author

Keywords

Comments

Number of primitive sublattices of index n in generic 2-dimensional lattice; also index of Gamma_0(n) in SL_2(Z).
A generic 2-dimensional lattice L = consists of all vectors of the form mV + nW, (m,n integers). A sublattice S = has index |ad-bc| and is primitive if gcd(a,b,c,d) = 1. The generic lattice L has precisely a(2) = 3 sublattices of index 2, namely <2V,W>, and (which = ) and so on for other indices.
The sublattices of index n are in 1-to-1 correspondence with matrices [a b; 0 d] with a>0, ad=n, b in [0..d-1]. The number of these is Sum_{d|n} = sigma(n), which is A000203. A sublattice is primitive if gcd(a,b,d) = 1; the number of these is n * product_{p|n} (1+1/p), which is the present sequence.
SL_2(Z) = Gamma is the group of all 2 X 2 matrices [a b; c d] where a,b,c,d are integers with ad-bc = 1 and Gamma_0(N) is usually defined as the subgroup of this for which N|c. But conceptually Gamma is best thought of as the group of (positive) automorphisms of a lattice , its typical element taking V -> aV + bW, W -> cV + dW and then Gamma_0(N) can be defined as the subgroup consisting of the automorphisms that fix the sublattice of index N. - J. H. Conway, May 05 2001
Dedekind proved that if n = k_i*j_i for i in I represents all the ways to write n as a product, and e_i=gcd(k_i,j_i), then a(n)= sum(k_i / (e_i * phi(e_i)), i in I ) [cf. Dickson, History of the Theory of Numbers, Vol. 1, p. 123].
Also a(n)= number of cyclic subgroups of order n in an Abelian group of order n^2 and type (1,1) (Fricke). - Len Smiley, Dec 04 2001
The polynomial degree of the classical modular equation of degree n relating j(z) and j(nz) is psi(n) (Fricke). - Michael Somos, Nov 10 2006; clarified by Katherine E. Stange, Mar 11 2022
The Mobius transform of this sequence is A063659. - Gary W. Adamson, May 23 2008
The inverse Mobius transform of this sequence is A060648. - Vladeta Jovovic, Apr 05 2009
The Dirichlet inverse of this sequence is A008836(n) * A048250(n). - Álvar Ibeas, Mar 18 2015
The Riemann Hypothesis is true if and only if a(n)/n - e^gamma*log(log(n)) < 0 for any n > 30. - Enrique Pérez Herrero, Jul 12 2011
The Riemann Hypothesis is also equivalent to another inequality, see the Sole and Planat link. - Thomas Ordowski, May 28 2017
An infinitary analog of this sequence is the sum of the infinitary divisors of n (see A049417). - Vladimir Shevelev, Apr 01 2014
Problem: are there composite numbers n such that n+1 divides psi(n)? - Thomas Ordowski, May 21 2017
The sum of divisors d of n such that n/d is squarefree. - Amiram Eldar, Jan 11 2019
Psi(n)/n is a new maximum for each primorial (A002110) [proof in link: Patrick Sole and Michel Planat, Proposition 1 page 2]. - Bernard Schott, May 21 2020
From Jianing Song, Nov 05 2022: (Start)
a(n) is the number of subgroups of C_n X C_n that are isomorphic to C_n, where C_n is the cyclic group of order n. Proof: the number of elements of order n in C_n X C_n is A007434(n) (they are the elements of the form (a,b) in C_n X C_n where gcd(a,b,n) = 1), and each subgroup isomorphic to C_n contains phi(n) generators, so the number of such subgroups is A007434(n)/phi(n) = a(n).
The total number of order-n subgroups of C_n X C_n is A000203(n). (End)

Examples

			Let L = <V,W> be a 2-dimensional lattice. The 6 primitive sublattices of index 4 are generated by <4V,W>, <V,4W>, <4V,W+-V>, <2V+W,2W>, <2V,2W+V>. Compare A000203.
G.f. = x + 3*x^2 + 4*x^3 + 6*x^4 + 6*x^5 + 12*x^6 + 8*x^7 + 12*x^8 + 12*x^9 + ...
		

References

  • Tom Apostol, Intro. to Analyt. Number Theory, page 71, Problem 11, where this is called phi_1(n).
  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, p. 228.
  • R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Teubner, 1922, Vol. 2, see p. 220.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B41, p. 147.
  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 79.
  • G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see p. 25, Eq. (1).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Other sequences that count lattices/sublattices: A000203 (with primitive condition removed), A003050 (hexagonal lattice instead), A003051, A054345, A160889, A160891.
Cf. A301594.
Cf. A063659 (Möbius transform), A082020 (average order), A156303 (Euler transform), A173290 (partial sums), A175836 (partial products), A203444 (range).
Cf. A210523 (record values).
Algebraic combinations with other core sequences: A000082, A033196, A175732, A291784, A344695.
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), this sequence (k=1), A065958 (k=2), A065959 (k=3), A065960 (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), A351304 (k=9), A351305 (k=10).
Cf. A082695 (Dgf at s=3), A339925 (Dgf at s=4).

Programs

  • Haskell
    import Data.Ratio (numerator)
    a001615 n = numerator (fromIntegral n * (product $
                map ((+ 1) . recip . fromIntegral) $ a027748_row n))
    -- Reinhard Zumkeller, Jun 03 2013, Apr 12 2012
    
  • Magma
    m:=75; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[MoebiusMu(k)^2*x^k/(1-x^k)^2: k in [1..2*m]]) )); // G. C. Greubel, Nov 23 2018
    
  • Maple
    A001615 := proc(n) n*mul((1+1/i[1]),i=ifactors(n)[2]) end; # Mark van Hoeij, Apr 18 2012
  • Mathematica
    Join[{1}, Table[n Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]), {n, 2, 100}]] (* T. D. Noe, Jun 11 2006 *)
    Table[DirichletConvolve[j, MoebiusMu[j]^2, j, n], {n, 100}] (* Jan Mangaldan, Aug 22 2013 *)
    a[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors[n]}]; (* Michael Somos, Jan 10 2015 *)
    Table[n Product[1 + 1/p, {p, Select[Divisors[n], PrimeQ]}], {n, 1, 100}] (* Vaclav Kotesovec, May 08 2021 *)
    Table[n DivisorSum[n, MoebiusMu[#]^2/# &], {n, 20}] (* Eric W. Weisstein, Mar 09 2025 *)
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, (1 + X) / (1 - p*X)) [n])};
    
  • PARI
    {a(n) = if( n<1, 0, n * sumdiv( n, d, moebius(d)^2 / d))}; /* Michael Somos, Nov 10 2006 */
    
  • PARI
    a(n)=my(f=factor(n)); prod(i=1,#f~, f[i,1]^f[i,2] + f[i,1]^(f[i,2]-1)) \\ Charles R Greathouse IV, Aug 22 2013
    
  • PARI
    a(n) = n * sumdivmult(n, d, issquarefree(d)/d) \\ Charles R Greathouse IV, Sep 09 2014
    
  • Python
    from math import prod
    from sympy import primefactors
    def A001615(n):
        plist = primefactors(n)
        return n*prod(p+1 for p in plist)//prod(plist) # Chai Wah Wu, Jun 03 2021
  • Sage
    def A001615(n) : return n*mul(1+1/p for p in prime_divisors(n))
    [A001615(n) for n in (1..69)] # Peter Luschny, Jun 10 2012
    

Formula

Dirichlet g.f.: zeta(s) * zeta(s-1) / zeta(2*s). - Michael Somos, May 19 2000
Multiplicative with a(p^e) = (p+1)*p^(e-1). - David W. Wilson, Aug 01 2001
a(n) = A003557(n)*A048250(n) = n*A000203(A007947(n))/A007947(n). - Labos Elemer, Dec 04 2001
a(n) = n*Sum_{d|n} mu(d)^2/d, Dirichlet convolution of A008966 and A000027. - Benoit Cloitre, Apr 07 2002
a(n) = Sum_{d|n} mu(n/d)^2 * d. - Joerg Arndt, Jul 06 2011
From Enrique Pérez Herrero, Aug 22 2010: (Start)
a(n) = J_2(n)/J_1(n) = J_2(n)/phi(n) = A007434(n)/A000010(n), where J_k is the k-th Jordan Totient Function.
a(n) = (1/phi(n))*Sum_{d|n} mu(n/d)*d^(b-1), for b=3. (End)
a(n) = n / Sum_{d|n} mu(d)/a(d). - Enrique Pérez Herrero, Jun 06 2012
a(n^k)= n^(k-1) * a(n). - Enrique Pérez Herrero, Jan 05 2013
If n is squarefree, then a(n) = A049417(n) = A000203(n). - Vladimir Shevelev, Apr 01 2014
a(n) = Sum_{d^2 | n} mu(d) * A000203(n/d^2). - Álvar Ibeas, Dec 20 2014
The average order of a(n) is 15*n/Pi^2. - Enrique Pérez Herrero, Jan 14 2012. See Apostol. - N. J. A. Sloane, Sep 04 2017
G.f.: Sum_{k>=1} mu(k)^2*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Oct 25 2018
a(n) = Sum_{d|n} 2^omega(d) * phi(n/d), Dirichlet convolution of A034444 and A000010. - Daniel Suteu, Mar 09 2019
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} 2^omega(gcd(n,k)).
a(n) = Sum_{k=1..n} 2^omega(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
a(n) = abs(A158523(n)) = A158523(n) * A008836(n). - Enrique Pérez Herrero, Nov 07 2022
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^2). - Ridouane Oudra, Mar 26 2025

Extensions

More terms from Olivier Gérard, Aug 15 1997

A004016 Theta series of planar hexagonal lattice A_2.

Original entry on oeis.org

1, 6, 0, 6, 6, 0, 0, 12, 0, 6, 0, 0, 6, 12, 0, 0, 6, 0, 0, 12, 0, 12, 0, 0, 0, 6, 0, 6, 12, 0, 0, 12, 0, 0, 0, 0, 6, 12, 0, 12, 0, 0, 0, 12, 0, 0, 0, 0, 6, 18, 0, 0, 12, 0, 0, 0, 0, 12, 0, 0, 0, 12, 0, 12, 6, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 6, 12, 0, 0, 12, 0
Offset: 0

Views

Author

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
a(n) is the number of integer solutions to x^2 + x*y + y^2 = n (or equivalently x^2 - x*y + y^2 = n). - Michael Somos, Sep 20 2004
a(n) is the number of integer solutions to x^2 + y^2 + z^2 = 2*n where x + y + z = 0. - Michael Somos, Mar 12 2012
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (the present sequence), b(q) (A005928), c(q) (A005882).
a(n) = 6*A002324(n) if n>0, and A002324 is multiplicative, thus a(1)*a(m*n) = a(n)*a(m) if n>0, m>0 are relatively prime. - Michael Somos, Mar 17 2019
The first occurrence of a(n)= 6, 12, 18, 24, ... (multiples of 6) is at n= 1, 7, 49, 91, 2401, 637, 117649, ... (see A002324). - R. J. Mathar, Sep 21 2024

Examples

			G.f. = 1 + 6*x + 6*x^3 + 6*x^4 + 12*x^7 + 6*x^9 + 6*x^12 + 12*x^13 + 6*x^16 + ...
Theta series of A_2 on the standard scale in which the minimal norm is 2:
1 + 6*q^2 + 6*q^6 + 6*q^8 + 12*q^14 + 6*q^18 + 6*q^24 + 12*q^26 + 6*q^32 + 12*q^38 + 12*q^42 + 6*q^50 + 6*q^54 + 12*q^56 + 12*q^62 + 6*q^72 + 12*q^74 + 12*q^78 + 12*q^86 + 6*q^96 + 18*q^98 + 12*q^104 + 12*q^114 + 12*q^122 + 12*q^126 + 6*q^128 + 12*q^134 + 12*q^146 + 6*q^150 + 12*q^152 + 12*q^158 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 171, Entry 28.
  • Harvey Cohn, Advanced Number Theory, Dover Publications, Inc., 1980, p. 89. Ex. 18.
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 111.
  • M. N. Huxley, Area, Lattice Points and Exponential Sums, Oxford, 1996; p. 236.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See also A035019.
Cf. A000007, A000122, A004015, A008444, A008445, A008446, A008447, A008448, A008449 (Theta series of lattices A_0, A_1, A_3, A_4, ...), A186706.

Programs

  • Magma
    Basis( ModularForms( Gamma1(3), 1), 81) [1]; /* Michael Somos, May 27 2014 */
    
  • Magma
    L := Lattice("A",2); A := ThetaSeries(L, 161); A; /* Michael Somos, Nov 13 2014 */
    
  • Maple
    A004016 := proc(n)
        local a,j ;
        a := A033716(n) ;
        for j from 0 to n/3 do
            a := a+A089800(n-1-3*j)*A089800(j) ;
        end do:
        a;
    end proc:
    seq(A004016(n),n=0..49) ; # R. J. Mathar, Feb 22 2021
  • Mathematica
    a[ n_] := If[ n < 1, Boole[ n == 0 ], 6 DivisorSum[ n, KroneckerSymbol[ #, 3] &]]; (* Michael Somos, Nov 08 2011 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q]^3 + 9 q QPochhammer[ q^9]^3) / QPochhammer[ q^3], {q, 0, n}]; (* Michael Somos, Nov 13 2014 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^3] + EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^3], {q, 0, n}]; (* Michael Somos, Nov 13 2014 *)
    a[ n_] := Length @ FindInstance[ x^2 + x y + y^2 == n, {x, y}, Integers, 10^9]; (* Michael Somos, Sep 14 2015 *)
    terms = 81; f[q_] = LatticeData["A2", "ThetaSeriesFunction"][-I Log[q]/Pi]; s = Series[f[q], {q, 0, 2 terms}]; CoefficientList[s, q^2][[1 ;; terms]] (* Jean-François Alcover, Jul 04 2017 *)
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); 6 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 1, p%3==1, e+1, 1-e%2)))}; /* Michael Somos, May 20 2005 */ /* Editor's note: this is the most efficient program */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 + 6 * sum( k=1,n, x^k / (1 + x^k + x^(2*k)), x * O(x^n)), n))}; /* Michael Somos, Oct 06 2003 */
    
  • PARI
    {a(n) = if( n<1, n==0, 6 * sumdiv( n,d, kronecker( d, 3)))}; /* Michael Somos, Mar 16 2005 */
    
  • PARI
    {a(n) = if( n<1, n==0, 6 * sumdiv( n,d, (d%3==1) - (d%3==2)))}; /* Michael Somos, May 20 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, n*=3; A = x * O(x^n); polcoeff( (eta(x + A)^3  + 3 * x * eta(x^9 + A)^3) / eta(x^3 + A), n))}; /* Michael Somos, May 20 2005 */
    
  • PARI
    {a(n) = if( n<1, n==0, qfrep([ 2, 1; 1, 2], n, 1)[n] * 2)}; /* Michael Somos, Jul 16 2005 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 + 6 * sum( k=1, n, x^(3*k - 2) / (1 - x^(3*k - 2)) - x^(3*k - 1) / (1 - x^(3*k - 1)), x * O(x^n)), n))} /* Paul D. Hanna, Jul 03 2011 */
    
  • Python
    from math import prod
    from sympy import factorint
    def A004016(n): return 6*prod(e+1 if p%3==1 else int(not e&1) for p, e in factorint(n).items() if p != 3) if n else 1 # Chai Wah Wu, Nov 17 2022
  • Sage
    ModularForms( Gamma1(3), 1, prec=81).0 ; # Michael Somos, Jun 04 2013
    

Formula

Expansion of a(q) in powers of q where a(q) is the first cubic AGM theta function.
Expansion of theta_3(q) * theta_3(q^3) + theta_2(q) * theta_2(q^3) in powers of q.
Expansion of phi(x) * phi(x^3) + 4 * x * psi(x^2) * psi(x^6) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of (1 / Pi) integral_{0 .. Pi/2} theta_3(z, q)^3 + theta_4(z, q)^3 dz in powers of q^2. - Michael Somos, Jan 01 2012
Expansion of coefficient of x^0 in f(x * q, q / x)^3 in powers of q^2 where f(,) is Ramanujan's general theta function. - Michael Somos, Jan 01 2012
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 - 3*v^2 - 2*u*w + 4*w^2. - Michael Somos, Jun 11 2004
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (u1-u3) * (u3-u6) - (u2-u6)^2. - Michael Somos, May 20 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 3^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 11 2007
G.f. A(x) satisfies A(x) + A(-x) = 2 * A(x^4), from Ramanujan.
G.f.: 1 + 6 * Sum_{k>0} x^k / (1 + x^k + x^(2*k)). - Michael Somos, Oct 06 2003
G.f.: Sum_( q^(n^2+n*m+m^2) ) where the sum (for n and m) extends over the integers. - Joerg Arndt, Jul 20 2011
G.f.: theta_3(q) * theta_3(q^3) + theta_2(q) * theta_2(q^3) = (eta(q^(1/3))^3 + 3 * eta(q^3)^3) / eta(q).
G.f.: 1 + 6*Sum_{n>=1} x^(3*n-2)/(1-x^(3*n-2)) - x^(3*n-1)/(1-x^(3*n-1)). - Paul D. Hanna, Jul 03 2011
a(3*n + 2) = 0, a(3*n) = a(n), a(3*n + 1) = 6 * A033687(n). - Michael Somos, Jul 16 2005
a(2*n + 1) = 6 * A033762(n), a(4*n + 2) = 0, a(4*n) = a(n), a(4*n + 1) = 6 * A112604(n), a(4*n + 3) = 6 * A112595(n). - Michael Somos, May 17 2013
a(n) = 6 * A002324(n) if n>0. a(n) = A005928(3*n).
Euler transform of A192733. - Michael Somos, Mar 12 2012
a(n) = (-1)^n * A180318(n). - Michael Somos, Sep 14 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/sqrt(3) = 3.627598... (A186706). - Amiram Eldar, Oct 15 2022

A145393 Number of inequivalent sublattices of index n in square lattice, where two sublattices are considered equivalent if one can be rotated or reflected to give the other, with that rotation or reflection preserving the parent square lattice.

Original entry on oeis.org

1, 2, 2, 4, 3, 5, 3, 7, 5, 7, 4, 11, 5, 8, 8, 12, 6, 13, 6, 15, 10, 11, 7, 21, 10, 13, 12, 18, 9, 22, 9, 21, 14, 16, 14, 29, 11, 17, 16, 29, 12, 28, 12, 25, 23, 20, 13, 39, 16, 27, 20, 29, 15, 34, 20, 36, 22, 25, 16, 50, 17, 26, 29, 38, 24, 40, 18, 36, 26, 40
Offset: 1

Views

Author

N. J. A. Sloane, Feb 23 2009

Keywords

Comments

From Andrey Zabolotskiy, Mar 12 2018: (Start)
If reflections are not allowed, we get A145392. If any rotations and reflections are allowed, we get A054346.
The parent lattice of the sublattices under consideration has Patterson symmetry group p4mm, and two sublattices are considered equivalent if they are related via a symmetry from that group [Rutherford]. For other 2D Patterson groups, the analogous sequences are A000203 (p2), A069734 (p2mm), A145391 (c2mm), A145392 (p4), A145394 (p6), A003051 (p6mm).
Rutherford says at p. 161 that a(n) != A054346(n) only when A002654(n) > 2, but actually these two sequence differ at other terms, too, for example, at n = 30 (see illustration). (End)

Crossrefs

Programs

  • Mathematica
    terms = 70;
    CoefficientList[Sum[(1/((1-x^m)(1-x^(4m)))-1), {m, 1, terms}] + O[x]^(terms + 1), x] // Rest (* Jean-François Alcover, Aug 05 2018 *)

Formula

a(n) = (A000203(n) + A002654(n) + A069735(n) + A145390(n))/4. [Rutherford] - N. J. A. Sloane, Mar 13 2009
G.f.: Sum_{ m>=1 } (1/((1-x^m)(1-x^(4m))) - 1). [Hanany, Orlando & Reffert, eq. (6.8)] - Andrey Zabolotskiy, Jul 05 2017
a(n) = Sum_{ m: m^2|n } A019590(n/m^2) + A157228(n/m^2) + A157226(n/m^2) + A157230(n/m^2) + A157231(n/m^2) = A053866(n) + A025441(n) + Sum_{ m: m^2|n } A157226(n/m^2) + A157230(n/m^2) + A157231(n/m^2). [Rutherford] - Andrey Zabolotskiy, May 07 2018
a(n) = Sum_{ d|n } A008621(d) = Sum_{ d|n } (1 + floor(d/4)). [From the above-given g.f.] - Andrey Zabolotskiy, Jul 17 2019

Extensions

New name from Andrey Zabolotskiy, Mar 12 2018

A069734 Number of pairs (p,q), 0<=p<=q, such that p+q divides n.

Original entry on oeis.org

1, 3, 3, 6, 4, 9, 5, 11, 8, 12, 7, 19, 8, 15, 14, 20, 10, 24, 11, 26, 18, 21, 13, 37, 17, 24, 22, 33, 16, 42, 17, 37, 26, 30, 26, 53, 20, 33, 30, 52, 22, 54, 23, 47, 42, 39, 25, 71, 30, 51, 38, 54, 28, 66, 38, 67, 42, 48, 31, 94, 32, 51, 55, 70, 44, 78, 35, 68, 50, 78, 37, 108
Offset: 1

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Comments

Also number of orientable coverings of the Klein bottle with 2n lists (orientable m-list coverings exist only for even m).
Equals row sums of triangle A178650. - Gary W. Adamson, May 31 2010
Also number of inequivalent sublattices of index n of the rectangular lattice, that has the p2mm (pmm) symmetry group [Rutherford]. For other 2D Patterson groups, the analogous sequences are A000203 (p2), A145391 (c2mm), A145392 (p4), A145393 (p4mm), A145394 (p6), A003051 (p6mm). - Andrey Zabolotskiy, Mar 12 2018

Examples

			There are 9 pairs (p,q), 0<=p<=q, such that p+q divides 6: (0,1), (0,2), (0,3), (0,6), (1,1), (1, 2), (1, 5), (2, 4), (3, 3); thus a(6) = 9.
x + 3*x^2 + 3*x^3 + 6*x^4 + 4*x^5 + 9*x^6 + 5*x^7 + 11*x^8 + 8*x^9 + ...
		

Crossrefs

Programs

  • Maple
    with(numtheory): a := n -> (sigma(n) + tau(n) + `if`(irem(n,2) = 1, 0, tau(n/2)))/2: seq(a(n), n=1..72); # Peter Luschny, Jul 20 2019
  • Mathematica
    a[n_] := (DivisorSigma[1, n] + DivisorSigma[0, n] + If[OddQ[n], 0, DivisorSigma[0, n/2]])/2;
    Array[a, 72] (* Jean-François Alcover, Aug 27 2019, from Maple *)
  • PARI
    {a(n) = if( n<1, 0, sum( k=1, n, sum( j=0, k, n%(j+k) == 0)))} /* Michael Somos, Mar 24 2012 */

Formula

a(n) = A046524(2n) - A069733(2n).
Inverse Moebius transform of: 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, ... G.f.: Sum_{n>0} x^n*(1+x^n-x^(2*n))/(1-x^(2*n))/(1-x^n). - Vladeta Jovovic, Feb 03 2003
a(n) = (A000203(n) + A069735(n))/2. [Rutherford] - N. J. A. Sloane, Mar 13 2009
a(n) = Sum_{ m: m^2|n } A304182(n/m^2) + A304183(n/m^2) = A069735(n) + Sum_{ m: m^2|n } A304183(n/m^2). - Andrey Zabolotskiy, May 07 2018
a(n) = Sum_{ d|n } A008619(d) = Sum_{ d|n } (1 + floor(d/2)). - Andrey Zabolotskiy, Jul 20 2019
a(n) = (A007503(n) + A183063(n))/2. - Peter Luschny, Jul 20 2019

Extensions

New description from Vladeta Jovovic, Feb 03 2003

A159842 Number of symmetrically-distinct supercells (sublattices) of the fcc and bcc lattices (n is the "volume factor" of the supercell).

Original entry on oeis.org

1, 2, 3, 7, 5, 10, 7, 20, 14, 18, 11, 41, 15, 28, 31, 58, 21, 60, 25, 77, 49, 54, 33, 144, 50, 72, 75, 123, 49, 158, 55, 177, 97, 112, 99, 268, 75, 136, 129, 286, 89, 268, 97, 249, 218, 190, 113, 496, 146, 280, 203, 333, 141, 421, 207, 476, 247, 290, 171, 735
Offset: 1

Views

Author

Gus Hart (gus_hart(AT)byu.edu), Apr 23 2009

Keywords

Comments

The number of fcc/bcc supercells (sublattices) as a function of n (volume factor) is equivalent to the sequence A001001. But many of these sublattices are symmetrically equivalent. The current sequence lists those that are symmetrically distinct.
Is this the same as A045790? - R. J. Mathar, Apr 28 2009
This sequence also gives number of sublattices of index n for the diamond structure - see Hanany, Orlando & Reffert, sec. 6.3 (they call it the tetrahedral lattice). Indeed: the diamond structure consists of two interpenetrating fcc lattices, and all sites of any sublattice should belong to the same fcc lattice because every sublattice is inversion-symmetric. - Andrey Zabolotskiy, Mar 18 2018

Crossrefs

Programs

  • Python
    def dc(f, *r): # Dirichlet convolution of multiple sequences
        if not r:
            return f
        return lambda n: sum(f(d)*dc(*r)(n//d) for d in range(1, n+1) if n%d == 0)
    def fin(*a): # finite sequence
        return lambda n: 0 if n > len(a) else a[n-1]
    def per(*a): # periodic sequences
        return lambda n: a[n%len(a)]
    u, N, N2 = lambda n: 1, lambda n: n, lambda n: n**2
    def a(n): # Hanany, Orlando & Reffert, sec. 6.3
        return (dc(u, N, N2)(n) + 9*dc(fin(1, -1, 0, 4), u, u, N)(n)
                + 8*dc(fin(1, 0, -1, 0, 0, 0, 0, 0, 3), u, u, per(0, 1, -1))(n)
                + 6*dc(fin(1, -1, 0, 2), u, u, per(0, 1, 0, -1))(n))//24
    print([a(n) for n in range(1, 300)])
    # Andrey Zabolotskiy, Mar 18 2018

Extensions

Terms a(20) and beyond from Andrey Zabolotskiy, Mar 18 2018

A003050 Number of primitive sublattices of index n in hexagonal lattice: triples x,y,z from Z/nZ with x+y+z = 0, discarding any triple that can be obtained from another by multiplying by a unit and permuting.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 3, 4, 3, 4, 3, 6, 4, 5, 6, 6, 4, 7, 5, 8, 8, 7, 5, 12, 6, 8, 7, 10, 6, 14, 7, 10, 10, 10, 10, 14, 8, 11, 12, 16, 8, 18, 9, 14, 14, 13, 9, 20, 11, 16, 14, 16, 10, 19, 14, 20, 16, 16, 11, 28, 12, 17, 18, 18, 16, 26, 13, 20, 18, 26, 13, 28
Offset: 1

Views

Author

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
Also the number of triangles with vertices on points of the hexagonal lattice that have area equal to n/2. - Amihay Hanany, Oct 15 2009 [Here the area is measured in the units of the lattice unit cell area; since the number of the triangles of different shapes with the same half-integral area is infinite, the triangles are probably counted up to the equivalence relation defined in the Davey, Hanany and Rak-Kyeong Seong paper. Also, this comment probably belongs to A003051, not here. - Andrey Zabolotskiy, Mar 10 2018 and Jul 04 2019]
Also number of 2n-vertex connected cubic vertex-transitive graphs which are Cayley graphs for a dihedral group [Potočnik et al.]. - N. J. A. Sloane, Apr 19 2014

Examples

			For n = 6 the 3 primitive triples are 510, 411, 321.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003051 (not only primitive sublattices), A001615, A006984, A007997, A048259, A054345, A154272, A157235.

Programs

  • Mathematica
    Join[{1}, Table[p=Transpose[FactorInteger[n]][[1]]; If[Mod[n,2]==0 || Mod[n,9]==0, c1=0, c1=Product[(1+JacobiSymbol[p[[i]],3]), {i,Length[p]}]]; c2={2,1,0,1,1,1,0,1}[[1+Mod[n,8]]]; n*Product[(1+1/p[[i]]), {i, Length[p]}]/6+c1/3+2^(Length[p]-2+c2), {n,2,100}]] (* T. D. Noe, Oct 18 2009 *)

Formula

Let n = Product_{i=1..w} p_i^e_i. Then a(n) = (1/6)*n*Product_{i=1..w} (1 + 1/p_i) + (C_1)/3 + 2^(w-2+C_2),
where C_1 = 0 if 2|n or 9|n, = Product_{i=1..w, p_i > 3} (1 + Legendre(p_i, 3)) otherwise,
and C_2 = 2 if n == 0 (mod 8), 1 if n == 1, 3, 4, 5, 7 (mod 8), 0 if n == 2, 6 (mod 8).

A145392 Number of inequivalent sublattices of index n in square lattice, where two sublattices are considered equivalent if one can be rotated by a multiple of Pi/2 to give the other.

Original entry on oeis.org

1, 2, 2, 4, 4, 6, 4, 8, 7, 10, 6, 14, 8, 12, 12, 16, 10, 20, 10, 22, 16, 18, 12, 30, 17, 22, 20, 28, 16, 36, 16, 32, 24, 28, 24, 46, 20, 30, 28, 46, 22, 48, 22, 42, 40, 36, 24, 62, 29, 48, 36, 50, 28, 60, 36, 60, 40, 46, 30, 84, 32, 48, 52, 64, 44, 72, 34, 64, 48, 72
Offset: 1

Views

Author

N. J. A. Sloane, Feb 23 2009

Keywords

Comments

From Andrey Zabolotskiy, Mar 12 2018: (Start)
The parent lattice of the sublattices under consideration has Patterson symmetry group p4, and two sublattices are considered equivalent if they are related via a symmetry from that group [Rutherford]. For other 2D Patterson groups, the analogous sequences are A000203 (p2), A069734 (p2mm), A145391 (c2mm), A145393 (p4mm), A145394 (p6), A003051 (p6mm).
If we count sublattices related by parent-lattice-preserving reflection as equivalent, we get A145393 instead of this sequence. If we count sublattices related by rotation of the sublattice only (but not parent lattice; equivalently, sublattices related by rotation by angle which is not a multiple of Pi/2; see illustration in links) as equivalent, we get A054345. If we count sublattices related by any rotation or reflection as equivalent, we get A054346.
Rutherford says at p. 161 that a(n) != A054345(n) only when A002654(n) > 1, but actually these two sequences differ at other terms, too, for example, at n = 15 (see illustration). (End)

Crossrefs

Programs

Formula

a(n) = (A000203(n) + A002654(n))/2. [Rutherford] - N. J. A. Sloane, Mar 13 2009
a(n) = Sum_{ m: m^2|n } A000089(n/m^2) + A157224(n/m^2) = A002654(n) + Sum_{ m: m^2|n } A157224(n/m^2). - Andrey Zabolotskiy, May 07 2018
a(n) = Sum_{ d|n } A004525(d). - Andrey Zabolotskiy, Aug 29 2019

Extensions

New name from Andrey Zabolotskiy, Mar 12 2018

A145394 Number of inequivalent sublattices of index n in hexagonal lattice, where two sublattices are considered equivalent if one can be rotated by a multiple of Pi/3 to give the other.

Original entry on oeis.org

1, 1, 2, 3, 2, 4, 4, 5, 5, 6, 4, 10, 6, 8, 8, 11, 6, 13, 8, 14, 12, 12, 8, 20, 11, 14, 14, 20, 10, 24, 12, 21, 16, 18, 16, 31, 14, 20, 20, 30, 14, 32, 16, 28, 26, 24, 16, 42, 21, 31, 24, 34, 18, 40, 24, 40, 28, 30, 20, 56, 22, 32, 36, 43, 28, 48, 24, 42, 32, 48, 24, 65, 26, 38, 42, 48, 32, 56, 28, 62
Offset: 1

Views

Author

N. J. A. Sloane, Feb 23 2009

Keywords

Comments

Also, apparently a(n) is the number of nonequivalent (up to lattice-preserving affine transformation) triangles on 2D square lattice of area n/2 [Karpenkov]. - Andrey Zabolotskiy, Jul 06 2017
From Andrey Zabolotskiy, Jan 18 2018: (Start)
The parent lattice of the sublattices under consideration has Patterson symmetry group p6, and two sublattices are considered equivalent if they are related via a symmetry from that group [Rutherford]. For other 2D Patterson groups, the analogous sequences are A000203 (p2), A069734 (p2mm), A145391 (c2mm), A145392 (p4), A145393 (p4mm), A003051 (p6mm).
If we count sublattices related by parent-lattice-preserving reflection as equivalent, we get A003051 instead of this sequence. If we count sublattices related by rotation of the sublattice only (but not parent lattice; equivalently, sublattices related by rotation by angle which is not a multiple of Pi/3; see illustration in links) as equivalent, we get A054384. If we count sublattices related by any rotation or reflection as equivalent, we get A300651.
Rutherford says at p. 161 that a(n) != A054384(n) only when A002324(n) > 1, but actually these two sequences differ at other terms, too, for example, at n = 14 (see illustration). (End)

Crossrefs

Programs

  • Mathematica
    a[n_] := (DivisorSigma[1, n] + 2 DivisorSum[n, Switch[Mod[#, 3], 1, 1, 2, -1, 0, 0] &])/3; Array[a, 80] (* Jean-François Alcover, Dec 03 2015 *)
  • PARI
    A002324(n) = if( n<1, 0, sumdiv(n, d, (d%3==1) - (d%3==2)));
    A000203(n) = if( n<1, 0, sigma(n));
    a(n) = (A000203(n) + 2 * A002324(n)) / 3;
    \\ Joerg Arndt, Oct 13 2013

Formula

a(n) = (A000203(n) + 2 * A002324(n))/3. [Rutherford] - N. J. A. Sloane, Mar 13 2009
a(n) = Sum_{ m: m^2|n } A000086(n/m^2) + A157227(n/m^2) = A002324(n) + Sum_{ m: m^2|n } A157227(n/m^2). [Rutherford] - Andrey Zabolotskiy, Apr 23 2018
a(n) = Sum_{ d|n } A008611(d-1). - Andrey Zabolotskiy, Aug 29 2019

Extensions

New name from Andrey Zabolotskiy, Dec 14 2017

A145391 Number of inequivalent sublattices of index n in centered rectangular lattice.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 5, 10, 8, 10, 7, 17, 8, 13, 14, 19, 10, 21, 11, 24, 18, 19, 13, 35, 17, 22, 22, 31, 16, 38, 17, 36, 26, 28, 26, 50, 20, 31, 30, 50, 22, 50, 23, 45, 42, 37, 25, 69, 30, 48, 38, 52, 28, 62, 38, 65, 42, 46, 31, 90, 32, 49, 55, 69, 44, 74, 35, 66, 50, 74
Offset: 1

Views

Author

N. J. A. Sloane, Feb 23 2009

Keywords

Comments

The centered rectangular lattice has symmetry group c2mm, or cmm. For other 2D Patterson groups, the analogous sequences are A000203 (p2), A069734 (p2mm), A145392 (p4), A145393 (p4mm), A145394 (p6), A003051 (p6mm). - Andrey Zabolotskiy, Mar 12 2018

Crossrefs

Programs

  • Mathematica
    a060594[n_] := Switch[Mod[n, 8], 2|6, 2^(PrimeNu[n] - 1), 1|3|4|5|7, 2^PrimeNu[n], 0, 2^(PrimeNu[n] + 1)];
    a145390[n_] := Sum[If[IntegerQ[Sqrt[d]], a060594[n/d], 0], {d, Divisors[n]} ];
    a[n_] := (DivisorSigma[1, n] + a145390[n])/2;
    Array[a, 100] (* Jean-François Alcover, Aug 31 2018 *)

Formula

a(n) = (A000203(n) + A145390(n))/2. [Rutherford] - N. J. A. Sloane, Mar 13 2009
a(n) = Sum_{ m: m^2|n } A060594(n/m^2) + A157223(n/m^2) = A145390(n) + Sum_{ m: m^2|n } A157223(n/m^2). - Andrey Zabolotskiy, May 07 2018
a(n) = Sum_{ d|n } A004525(d+1). - Andrey Zabolotskiy, Aug 29 2019

Extensions

New name from Andrey Zabolotskiy, Mar 12 2018
New name from Andrey Zabolotskiy, Jan 19 2022

A054345 Number of inequivalent sublattices of index n in a square lattice, where two sublattices are considered equivalent if one can be rotated to give the other.

Original entry on oeis.org

1, 1, 2, 2, 4, 3, 6, 4, 8, 7, 8, 6, 14, 7, 12, 10, 16, 9, 20, 10, 18, 16, 18, 12, 30, 13, 20, 20, 28, 15, 30, 16, 32, 24, 26, 20, 46, 19, 30, 26, 38, 21, 48, 22, 42, 33, 36, 24, 62, 29, 38, 34, 46, 27, 60, 30, 60, 40, 44, 30, 70, 31, 48, 52, 64, 33, 72, 34, 60, 48, 60
Offset: 0

Views

Author

N. J. A. Sloane, May 06 2000

Keywords

Comments

If reflections are allowed, we get A054346. If only rotations that preserve the parent square lattice are allowed, we get A145392. The analog for a hexagonal lattice is A054384.

Examples

			For n = 1, 2, 3, 4 the sublattices are generated by the rows of:
  [1 0] [2 0] [2 0] [3 0] [3 0] [4 0] [4 0] [2 0] [2 0]
  [0 1] [0 1] [1 1] [0 1] [1 1] [0 1] [1 1] [0 2] [1 2].
		

Crossrefs

Programs

  • SageMath
    # see A159842 for the definitions of dc, fin, u, N
    def ff(m, k1, minus = True):
        def f(n):
            if n == 1: return 1
            r = 1
            for (p, k) in factor(n):
                if p % 4 != m or k1 and k > 1: return 0
                if minus: r *= (-1)**k
            return r
        return f
    f1, f2, f3 = ff(1, True), ff(1, True, False), ff(3, False)
    def a_SL(n):
        return (dc(u, N, f1)(n) + dc(u, f3)(n)) / 2
    print([a_SL(n) for n in range(1, 100)]) # Andrey Zabolotskiy, Sep 22 2024
Showing 1-10 of 23 results. Next