A003098 Palindromic triangular numbers.
0, 1, 3, 6, 55, 66, 171, 595, 666, 3003, 5995, 8778, 15051, 66066, 617716, 828828, 1269621, 1680861, 3544453, 5073705, 5676765, 6295926, 35133153, 61477416, 178727871, 1264114621, 1634004361, 5289009825, 6172882716, 13953435931
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Charles W. Trigg, Palindromic Triangular Numbers, J. Rec. Math., 6 (1973), 146-147.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, p. 73 and p. 178, entry 828828 (Rev. ed. 1997)
Links
- T. D. Noe, Table of n, a(n) for n = 1..148 (from Patrick De Geest)
- Patrick De Geest, Palindromic Triangulars
- Shyam Sunder Gupta, Triangular Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 3, 83-125.
Programs
-
Mathematica
palQ[n_]:=Module[{idn=IntegerDigits[n]},idn==Reverse[idn]]; Select[ Accumulate[ Range[200000]],palQ] (* Harvey P. Dale, Mar 23 2011 *) Select[Accumulate[Range[0,170000]],PalindromeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 15 2019 *)
-
PARI
list(lim)=my(v=List(),d); for(n=0,(sqrt(8*lim+1)-1)/2, d=digits(n*(n+1)/2); if(d==Vecrev(d), listput(v,n*(n+1)/2))); Vec(v) \\ Charles R Greathouse IV, Jun 23 2017
-
Python
A003098_list = [m for m in (n*(n+1)//2 for n in range(10**5)) if str(m) == str(m)[::-1]] # Chai Wah Wu, Sep 03 2021
Comments