cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003098 Palindromic triangular numbers.

Original entry on oeis.org

0, 1, 3, 6, 55, 66, 171, 595, 666, 3003, 5995, 8778, 15051, 66066, 617716, 828828, 1269621, 1680861, 3544453, 5073705, 5676765, 6295926, 35133153, 61477416, 178727871, 1264114621, 1634004361, 5289009825, 6172882716, 13953435931
Offset: 1

Views

Author

Keywords

Comments

The only known terms with an even number 2*m of digits that are the concatenation of two palindromes with m digits are 55, 66 and 828828 (see David Wells entry 828828). - Bernard Schott, Apr 29 2022

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Charles W. Trigg, Palindromic Triangular Numbers, J. Rec. Math., 6 (1973), 146-147.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, p. 73 and p. 178, entry 828828 (Rev. ed. 1997)

Crossrefs

Cf. A008509.
Intersection of A000217 and A002113.

Programs

  • Mathematica
    palQ[n_]:=Module[{idn=IntegerDigits[n]},idn==Reverse[idn]]; Select[ Accumulate[ Range[200000]],palQ]  (* Harvey P. Dale, Mar 23 2011 *)
    Select[Accumulate[Range[0,170000]],PalindromeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 15 2019 *)
  • PARI
    list(lim)=my(v=List(),d); for(n=0,(sqrt(8*lim+1)-1)/2, d=digits(n*(n+1)/2); if(d==Vecrev(d), listput(v,n*(n+1)/2))); Vec(v) \\ Charles R Greathouse IV, Jun 23 2017
    
  • Python
    A003098_list = [m for m in (n*(n+1)//2 for n in range(10**5)) if str(m) == str(m)[::-1]] # Chai Wah Wu, Sep 03 2021