A003113 Coefficients in expansion of permanent of infinite tridiagonal matrix shown below.
2, 1, 2, 2, 3, 3, 5, 5, 7, 8, 10, 11, 15, 16, 20, 23, 28, 31, 38, 42, 51, 57, 67, 75, 89, 99, 115, 129, 149, 166, 192, 213, 244, 272, 309, 344, 391, 433, 489, 543, 611, 676, 760, 839, 939, 1038, 1157, 1276, 1422, 1565, 1738, 1913, 2119, 2328, 2576, 2826, 3120
Offset: 0
Keywords
References
- D. H. Lehmer, Course on History of Mathematics, Univ. Calif. Berkeley, 1973.
- H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- Herman P. Robinson, Letter to N. J. A. Sloane, Jan 1974.
Crossrefs
Programs
-
Mathematica
nmax = 60; CoefficientList[1 + Series[Sum[x^(j*(j-1))/Product[1 - x^i, {i, 1, j}], {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 02 2016 *)
Formula
G.f.: 1 + sum(i>=1, x^(i*(i-1))/prod(j=1..i, 1-x^j)) - Jon Perry, Jul 04 2004
a(n) = A003114(n)+A003106(n). So this is the sum of the two famous Rogers-Ramanujan series. - Vladeta Jovovic, Jul 17 2004
G.f.: sum(n>=0,(q^(n^2)*(1+q^n)) / prod(k=1..n,1-q^k)). [Joerg Arndt, Oct 08 2012]
a(n) ~ (9+4*sqrt(5))^(1/4) * exp(2*Pi*sqrt(n/15)) / (2*3^(1/4)*sqrt(5)*n^(3/4)). - Vaclav Kotesovec, Jan 02 2016
Extensions
More terms from Vladeta Jovovic, Aug 30 2001
Comments