cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003113 Coefficients in expansion of permanent of infinite tridiagonal matrix shown below.

Original entry on oeis.org

2, 1, 2, 2, 3, 3, 5, 5, 7, 8, 10, 11, 15, 16, 20, 23, 28, 31, 38, 42, 51, 57, 67, 75, 89, 99, 115, 129, 149, 166, 192, 213, 244, 272, 309, 344, 391, 433, 489, 543, 611, 676, 760, 839, 939, 1038, 1157, 1276, 1422, 1565, 1738, 1913, 2119, 2328, 2576, 2826, 3120
Offset: 0

Views

Author

Keywords

Comments

1 1 0 0 0 0 0 ...
1 1 x 0 0 0 0 0 ...
0 x 1 x^2 0 0 0 ...
0 0 x^2 1 x^3 0 0 ...
0 0 0 x^3 1 x^4 0 0 0 ...
...................

References

  • D. H. Lehmer, Course on History of Mathematics, Univ. Calif. Berkeley, 1973.
  • H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The generalized Rogers-Ramanujan series G[1], G[2], G[3], G[4], G[5], G[6], G[7], G[8] are A003114, A003106, A006141, A264591, A264592, A264593, A264594, A264595. The present sequence, which is G[1]+G[2], plays the role of G[0].

Programs

  • Mathematica
    nmax = 60; CoefficientList[1 + Series[Sum[x^(j*(j-1))/Product[1 - x^i, {i, 1, j}], {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 02 2016 *)

Formula

G.f.: 1 + sum(i>=1, x^(i*(i-1))/prod(j=1..i, 1-x^j)) - Jon Perry, Jul 04 2004
a(n) = A003114(n)+A003106(n). So this is the sum of the two famous Rogers-Ramanujan series. - Vladeta Jovovic, Jul 17 2004
G.f.: sum(n>=0,(q^(n^2)*(1+q^n)) / prod(k=1..n,1-q^k)). [Joerg Arndt, Oct 08 2012]
a(n) ~ (9+4*sqrt(5))^(1/4) * exp(2*Pi*sqrt(n/15)) / (2*3^(1/4)*sqrt(5)*n^(3/4)). - Vaclav Kotesovec, Jan 02 2016

Extensions

More terms from Vladeta Jovovic, Aug 30 2001