A003151 Beatty sequence for 1+sqrt(2); a(n) = floor(n*(1+sqrt(2))).
2, 4, 7, 9, 12, 14, 16, 19, 21, 24, 26, 28, 31, 33, 36, 38, 41, 43, 45, 48, 50, 53, 55, 57, 60, 62, 65, 67, 70, 72, 74, 77, 79, 82, 84, 86, 89, 91, 94, 96, 98, 101, 103, 106, 108, 111, 113, 115, 118, 120, 123, 125, 127, 130, 132, 135, 137, 140, 142, 144
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Shiri Artstein-Avidan, Aviezri S. Fraenkel and Vera T. Sós, A two-parameter family of an extension of Beatty sequences, Discrete Math., Vol. 308, No. 20 (2008), pp. 4578-4588; preprint.
- Leonard Carlitz, Richard Scoville, and Verner E. Hoggatt, Jr., Pellian representatives, Fib. Quart., Vol. 10, No. 5 (1972), pp. 449-488.
- Benoit Cloitre, N. J. A. Sloane, and Matthew J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seq., Vol. 6 (2003), Article 03.2.2; arXiv preprint, arXiv:math/0305308 [math.NT], 2003.
- Joshua N. Cooper and Alexander W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors, J. Int. Seq., Vol. 16 (2013), Article 13.1.8; preprint, 2012.
- R. J. Mathar, Graphical representation among sequences closely related to this one (cf. N. J. A. Sloane, "Families of Essentially Identical Sequences").
- Luke Schaeffer, Jeffrey Shallit, and Stefan Zorcic, Beatty Sequences for a Quadratic Irrational: Decidability and Applications, arXiv:2402.08331 [math.NT], 2024. See pp. 17-18.
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence).
- Index entries for sequences related to Beatty sequences.
Crossrefs
Complement of A003152.
Equals A001951(n) + n.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A003151 as the parent: A003151, A001951, A001952, A003152, A006337, A080763, A082844 (conjectured), A097509, A159684, A188037, A245219 (conjectured), A276862. - N. J. A. Sloane, Mar 09 2021
Programs
-
Mathematica
Table[Floor[n*(1 + Sqrt[2])], {n, 1, 50}] (* G. C. Greubel, Jul 02 2017 *)
-
PARI
for(n=1,50, print1(floor(n*(1 + sqrt(2))), ", ")) \\ G. C. Greubel, Jul 02 2017
-
Python
from math import isqrt def A003151(n): return n+isqrt(n*n<<1) # Chai Wah Wu, Aug 03 2022
Formula
a(1) = 2; for n>1, a(n+1) = a(n)+3 if n is already in the sequence, a(n+1) = a(n)+2 otherwise.
Comments