cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003172 Q(sqrt n) is a unique factorization domain (or simple quadratic field).

Original entry on oeis.org

2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 21, 22, 23, 29, 31, 33, 37, 38, 41, 43, 46, 47, 53, 57, 59, 61, 62, 67, 69, 71, 73, 77, 83, 86, 89, 93, 94, 97, 101, 103, 107, 109, 113, 118, 127, 129, 131, 133, 134, 137, 139, 141, 149, 151, 157, 158, 161, 163, 166, 167, 173, 177, 179, 181, 191, 193, 197, 199, 201
Offset: 1

Views

Author

Keywords

Comments

Squarefree numbers n such that A003649 is 1. - T. D. Noe, Apr 02 2008

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, pp. 422-423.
  • E. L. Ince, Cycles of Reduced Ideals in Quadratic Fields. British Association Mathematical Tables, Vol. 4, London, 1934. (See p. 1.)
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. M. Stark, An Introduction to Number Theory. Markham, Chicago, 1970, p. 296.

Crossrefs

Cf. A061574 (includes negative n), A029702-A029705, A218038-A218042.

Programs

  • Mathematica
    Select[Range[2, 199], MoebiusMu[#] != 0 && NumberFieldClassNumber[Sqrt[#]] == 1 &] (* Alonso del Arte, Apr 17 2015 *)
  • PARI
    A007947(n)={my(p); p=factor(n)[, 1]; prod(i=1, length(p), p[i]); }
    { for (n=2, 10^3,
        if ( n!=A007947(n), next() );
        K = bnfinit(x^2 - n);
        if ( K.cyc == [], print1( n, ", ") );
    ); }
    /* Joerg Arndt, Oct 18 2012 */
    
  • PARI
    is(n)=issquarefree(n) && qfbclassno(if(n%4>1, 4, 1)*n)==1 \\ Charles R Greathouse IV, Jan 19 2017

Extensions

The table in Borevich and Shafarevich extends to 497.